×

State-dependent fractional point processes. (English) Zbl 1315.60056

Summary: In this paper we analyse the fractional Poisson process where the state probabilities \(p_{k}^{\nu_{k}}(t)\), \(t \geq 0\), are governed by time-fractional equations of order \(0 < \nu_{k} \leq 1\) depending on the number \(k\) of events that have occurred up to time \(t\). We are able to obtain explicitly the Laplace transform of \(p_{k}^{\nu_{k}}(t)\) and various representations of state probabilities. We show that the Poisson process with intermediate waiting times depending on \(\nu_{k}\) differs from that constructed from the fractional state equations (in the case of \(\nu_{k} = \nu\) for all \(k\), they coincide with the time-fractional Poisson process). We also introduce a different form of fractional state-dependent Poisson process as a weighted sum of homogeneous Poisson processes. Finally, we consider the fractional birth process governed by equations with state-dependent fractionality.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60G22 Fractional processes, including fractional Brownian motion
60G52 Stable stochastic processes
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals

Software:

DLMF

References:

[1] Balakrishnan, N. and Kozubowski, T. J. (2008). A class of weighted Poisson processes. Statist. Prob. Lett. 78, 2346-2352. · Zbl 1149.60030 · doi:10.1016/j.spl.2008.02.011
[2] Beghin, L. and Macci, C. (2013). Large deviations for fractional Poisson processes. Statist. Prob. Lett. 83, 1193-1202. · Zbl 1266.60046 · doi:10.1016/j.spl.2013.01.017
[3] Beghin, L. and Orsingher, E. (2009). Fractional Poisson processes and related planar random motions. Electron. J. Prob. 14, 1790-1827. · Zbl 1190.60028 · doi:10.1214/EJP.v14-675
[4] D’Ovidio, M., Orsingher, E. and Toaldo, B. (2014). Fractional telegraph-type equations and hyperbolic Brownian motion. Statist. Prob. Lett. 89, 131-137. · Zbl 1339.60087 · doi:10.1016/j.spl.2014.02.021
[5] Fedotov, S., Ivanov, A. O. and Zubarev, A. Y. (2013). Non-homogeneous random walks, subdiffusive migration of cells and anomolous chemotaxis. Math. Model. Nat. Phenom. 8, 28-43. · Zbl 1412.92022 · doi:10.1051/mmnp/20138203
[6] Garra, R. and Polito, F. (2011). A note on fractional linear pure birth and pure death processes in epidemic models. Physica A 390, 3704-3709.
[7] Hilfer, R. and Anton, L. (1995). Fractional master equation and fractal time random walks. Phys. Rev. E 51, R848-R851.
[8] Laskin, N. (2003). Fractional Poisson process. Commun. Nonlinear Sci. Numerical Simul. 8, 201-213. · Zbl 1025.35029 · doi:10.1016/S1007-5704(03)00037-6
[9] Laskin, N. (2009). Some applications of the fractional Poisson probability distribution. J. Math. Phys. 50, 113513. · Zbl 1304.81100 · doi:10.1063/1.3255535
[10] Mainardi, F., Gorenflo, R. and Scalas, E. (2004). A fractional generalization of the Poisson process. Vietnam J. Math. 32, 53-64. · Zbl 1087.60064
[11] Mathai, A. M. and Haubold, H. J. (2008). Special Functions for Applied Scientists . Springer, New York. · Zbl 1151.33001 · doi:10.1007/978-0-387-75894-7
[12] Meerschaert, M. M., Nane, E. and Vellaisamy, P. (2011). The fractional poisson process and the inverse stable subordinator. Electron. J. Prob. 16, 1600-1620. · Zbl 1245.60084 · doi:10.1214/EJP.v16-920
[13] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (eds) (2010). NIST Handbook of Mathematical Functions . Cambridge University Press. · Zbl 1198.00002
[14] Orsingher, E. and Polito, F. (2010). Fractional pure birth processes. Bernoulli 16, 858-881. · Zbl 1284.60156 · doi:10.3150/09-BEJ235
[15] Orsingher, E. and Polito, F. (2012). The space-fractional Poisson process. Statist. Prob. Lett. 82, 852-858. · Zbl 1270.60048 · doi:10.1016/j.spl.2011.12.018
[16] Podlubny, I. (1999). Fractional Differential Equations . Academic Press, San Diego, CA. · Zbl 0924.34008
[17] Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15. · Zbl 0221.45003
[18] Repin, O. N. and Saichev, A. I. (2000). Fractional Poisson law. Radiophysics Quantum Electron. 43, 738-741. · doi:10.1023/A:1004890226863
[19] Saxena, R. K., Mathai, A. M. and Haubold, H. J. (2006). Solutions of fractional reaction-diffusion equations in terms of Mittag-Leffler functions. Internat. J. Scientific Res. 15, 1-17. · Zbl 1153.34304
[20] Sixdeniers, J.-M., Penson, K. A. and Solomon, A. I. (1999). Mittag-Leffler coherent states. J. Phys. A 32, 7543-7563. · Zbl 0991.81042 · doi:10.1088/0305-4470/32/43/308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.