×

Extremes of homogeneous Gaussian random fields. (English) Zbl 1315.60059

Summary: Let \(\{X(s,t): s, t\geq 0\}\) be a centered homogeneous Gaussian field with almost surely continuous sample paths and correlation function \(r(s,t)=\text{cov}(X(s,t), X(0,0))\) such that \(r(s,t)=1-|s|^{\alpha_1}-|t|^{\alpha_2}+o(|s|^{\alpha_1}+|t|^{\alpha_2})\), \(s,t\to 0\), with \(\alpha_1, \alpha_2 \in (0, 2]\), and \(r(s,t)<1\) for \((s,t)\neq (0,0)\). In this contribution we derive an asymptotic expansion (as \(u\to \infty\)) of \(\mathbb{P}(\sup_{(sn_1(u),tn_2(u))\in [0,x]\times [0,y]}X(s,t)\leq u)\), where \(n_1(u)n_2(u)=u^{2/\alpha_1+2/\alpha_2}\Psi(u)\), which holds uniformly for \((x,y)\in [A,B]^2\) with \(A,B\) two positive constants and \(\Psi\) the survival function of an \(N(0,1)\) random variable. We apply our findings to the analysis of extremes of homogeneous Gaussian fields over more complex parameter sets and a ball of random radius. Additionally, we determine the extremal index of the discretised random field determined by \(X(s,t)\).

MSC:

60G60 Random fields
60G70 Extreme value theory; extremal stochastic processes
60G15 Gaussian processes

References:

[1] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York. · Zbl 0518.60021
[2] Arendarczyk, M. and Dȩbicki, K. (2012). Exact asymptotics of supremum of a stationary Gaussian process over a random interval. Statist. Prob. Lett. 82 , 645-652. · Zbl 1242.60034 · doi:10.1016/j.spl.2011.11.015
[3] Tan, Z. and Hashorva, E. (2013). Limit theorems for extremes of strongly dependent cyclo-stationary \(\chi\)-processes. Etremes 16 , 241-254. · Zbl 1274.60077 · doi:10.1007/s10687-013-0170-9
[4] Pickands, J., III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 , 51-73. · Zbl 0206.18802 · doi:10.2307/1995058
[5] Piterbarg, V. I. (1972). On the paper by J. Pickands ‘Upcrossing probabilities for stationary Gaussian processes’. Vestnik Moskov. Univ. Ser. I Mat. Meh. 27 , 25-30. · Zbl 0241.60031
[6] Piterbarg, V. I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields ( Trans. Math. Monogr. 148 ). American Mathematical Society, Providence, RI. · Zbl 0841.60024
[7] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge University Press. · Zbl 0617.26001
[8] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance . Springer, Berlin. · Zbl 0873.62116
[9] Jakubowski, A. (1991). Relative extremal index of two stationary processes. Stoch. Process. Appl. 37 , 281-297. · Zbl 0743.60051 · doi:10.1016/0304-4149(91)90048-H
[10] Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitsch. 65 , 291-306. · Zbl 0506.60030 · doi:10.1007/BF00532484
[11] O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences. Ann. Prob. 15 , 281-291. · Zbl 0619.60025 · doi:10.1214/aop/1176992270
[12] French, J. P. and Davis, R. A. (2013). The asymptotic distribution of the maxima of a Gaussian random field on a lattice. Extremes 16 , 1-26. · Zbl 1329.60096 · doi:10.1007/s10687-012-0149-y
[13] Hsing, T. (1993). Extremal index estimation for a weakly dependent stationary sequence. Ann. Statist. 21 , 2043-2071. · Zbl 0797.62018 · doi:10.1214/aos/1176349409
[14] Jakubowski, A. and Soja-Kukieła, N. (2014). Managing local dependencies in limit theorems for maxima of stationary random fields. Submitted..
[15] Ferreira, H. (2006). The upcrossings index and the extremal index. J. Appl. Prob. 43 , 927-937. · Zbl 1137.60024 · doi:10.1239/jap/1165505198
[16] Laurini, F. and Tawn, J. A. (2012). The extremal index for GARCH\((1,1)\) processes. Extremes 15 , 511-529. · Zbl 1329.60154 · doi:10.1007/s10687-012-0148-z
[17] Dȩbicki, K., Hashorva, E. and Soja-Kukieła, N. (2013). Extremes of homogeneous Gaussian random fields. Preprint. Available at http://arxiv.org/abs/1312.2863. · Zbl 1315.60059 · doi:10.1239/jap/1429282606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.