Cuong, Nguyen Tu; Goto, Shiro; van Hoang, Nguyen On the cofiniteness of generalized local cohomology modules. (English) Zbl 1316.13024 Kyoto J. Math. 55, No. 1, 169-185 (2015). Let \(R\) be a commutative Noetherian ring, let \(I\) be an ideal of \(R\), and let \(M\), \(N\) be two finitely generated \(R\)-modules. In the paper under review, the authors show that if \(I\) is a principal ideal, then the generalized local cohomology module \(H^j_I(M,N)\) is \(I\)-cofinite for all \(M\), \(N\) and all \(j<t\). In addition, they show that for a non-negative integer \(t\) if \(\dim(M)\leq 2\) or \(\dim(N)\leq 2\), then \(H^j_I(M,N)\) is \(I\)-cofinite for all \(j\). Reviewer: Siamak Yassemi (Tehran) Cited in 5 Documents MSC: 13D45 Local cohomology and commutative rings 13E99 Chain conditions, finiteness conditions in commutative ring theory 18G60 Other (co)homology theories (MSC2010) Keywords:generalized local cohomology; \(I\)-cofiniteness PDF BibTeX XML Cite \textit{N. T. Cuong} et al., Kyoto J. Math. 55, No. 1, 169--185 (2015; Zbl 1316.13024) Full Text: DOI arXiv Euclid OpenURL References: [1] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules , Proc. Amer. Math. Soc. 136 (2008), 2359-2363. · Zbl 1141.13014 [2] K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension , J. Algebra 321 (2009), 1997-2011. · Zbl 1168.13016 [3] M. H. Bijan-Zadeh, A common generalization of local cohomology theories , Glasgow Math. J. 21 (1980), 173-181. · Zbl 0438.13009 [4] K. Borna, P. Sahandi, and S. Yassemi, Cofiniteness of generalized local cohomology modules , Bull. Aust. Math. Soc. 83 (2011), 382-388. · Zbl 1222.13015 [5] M. Brodmann and A. L. Faghani, A finiteness result for associated primes of local cohomology modules , Proc. Amer. Math. Soc. 128 (2000), 2851-2853. · Zbl 0955.13007 [6] M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications , Cambridge Stud. Adv. Math 60 , Cambridge Univ. Press, Cambridge, 1998. · Zbl 0903.13006 [7] M. Chardin and K. Divaani-Aazar, A duality theorem for generalized local cohomology , Proc. Amer. Math. Soc. 136 (2008), 2749-2754. · Zbl 1144.13009 [8] M. Chardin and K. Divaani-Aazar, Generalized local cohomology and regularity of Ext modules , J. Algebra 319 (2008), 4780-4797. · Zbl 1144.13008 [9] N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules , East-West J. Math. 7 (2005), 107-115. · Zbl 1127.13016 [10] N. T. Cuong and N. V. Hoang, On the vanishing and the finiteness of supports of generalized local cohomology modules , Manuscripta Math. 126 (2008), 59-72. · Zbl 1140.13015 [11] N. T. Cuong and L. T. Nhan, On the Noetherian dimension of Artinian modules , Vietnam J. Math. 30 (2002), 121-130. · Zbl 1096.13523 [12] D. Delfino and T. Marley, Cofinite modules and local cohomology , J. Pure Appl. Algebra 121 (1997), 45-52. · Zbl 0893.13005 [13] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules , Proc. Amer. Math. Soc. 133 (2005), 655-660. · Zbl 1103.13010 [14] K. Divaani-Aazar and R. Sazeedeh, Cofiniteness of generalized local cohomology modules , Colloq. Math. 99 (2004), 283-290. · Zbl 1072.13011 [15] A. Grothendieck, Cohomologie local des faisceaux coherents et théorèmes de Lefschetz locaux et globaux , Séminaire de Géométrie Algébrique du Bois Marie 1962 (SGA 2), North-Holland, Amsterdam, 1968. [16] R. Hartshorne, Affine duality and cofiniteness , Invent. Math. 9 (1969/1970), 145-164. · Zbl 0196.24301 [17] J. Herzog, Komplexe, Auflösungen und Dualität in der Lokalen Algebra , Habilitationsschrift, Universität Regensburg, 1970. [18] J. Herzog and N. Zamani, Duality and vanishing of generalized local cohomology , Arch. Math. (Basel) 81 (2003), 512-519. · Zbl 1083.13006 [19] N. V. Hoang, On the associated primes and the supports of generalized local cohomology modules , Acta Math. Vietnam 33 (2008), 163-171. · Zbl 1161.13009 [20] S. Kawakami and K. I. Kawasaki, On the finiteness of Bass numbers of generalized local cohomology modules , Toyama Math. J. 29 (2006), 59-64. · Zbl 1141.13307 [21] K. I. Kawasaki, On the finiteness of Bass numbers of local cohomology modules , Proc. Amer. Math. Soc. 124 (1996), 3275-3279. · Zbl 0860.13011 [22] K. I. Kawasaki, Cofiniteness of local cohomology modules for principal ideals , Bull. London Math. Soc. 30 (1998), 241-246. · Zbl 0930.13013 [23] K. I. Kawasaki, On a category of cofinite modules which is Abelian , Math. Z. 269 (2011), 587-608. · Zbl 1228.13020 [24] I. G. Macdonald, “Secondary representation of modules over a commutative ring” in Symposia Mathematica, Vol. XI (Rome, 1971) , Academic Pres, London, 1973, 23-43. [25] T. Marley, Associated primes of local cohomology module over rings of small dimension , Manuscripta Math. 104 (2001), 519-525. · Zbl 0987.13009 [26] T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules , J. Algebra 256 (2002), 180-193. · Zbl 1042.13010 [27] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal , Math. Proc. Cambridge Philos. Soc. 107 (1990), 267-271. · Zbl 0709.13002 [28] L. Melkersson, Some applications of a criterion for Artinianness of a module , J. Pure Appl. Algebra 101 (1995), 291-303. · Zbl 0842.13014 [29] L. Melkersson, Properties of cofinite modules and applications to local cohomology , Math. Proc. Cambridge Phil. Soc. 125 (1999), 417-423. · Zbl 0921.13009 [30] L. Melkersson, Modules cofinite with respect to an ideal , J. Algebra 285 (2005), 649-668. · Zbl 1093.13012 [31] N. Suzuki, On the generalized local cohomology and its duality , J. Math. Kyoto Univ. 18 (1978), 71-85. · Zbl 0618.13008 [32] S. Yassemi, Generalized section functors , J. Pure Appl. Algebra 95 (1994), 103-119. · Zbl 0843.13005 [33] K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one , Nagoya Math. J. 147 (1997), 179-191. · Zbl 0899.13018 [34] H. Zöschinger, Minimax moduln , J. Algebra 102 (1986), 1-32. · Zbl 0593.13012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.