Harmonic univalent mappings and minimal graphs. (English) Zbl 1316.31002

Joshi, Santosh (ed.) et al., Current topics in pure and computational complex analysis. Most of the selected papers based on the presentations at the international workshop on complex analysis and its applications, Sangli, India, June 11–15, 2012. New Delhi: Birkhäuser/Springer (ISBN 978-81-322-2112-8/hbk; 978-81-322-2113-5/ebook). Trends in Mathematics, 21-46 (2014).
Summary: We survey results and open problems in harmonic maps and minimal surface theory at a level appropriate for graduate students and others interested in contributing to the existing research. After covering some basic results, several topics are covered in more detail, including the shearing technique, inner mapping radius, convolutions, the Weierstrass Representation, determining minimal surfaces via change of variables, curvature bounds, and conjugate minimal surfaces. A variety of new and standing conjectures is included throughout. Examples are worked in detail and presented visually using ComplexTool, Mathematica, and other software packages.
For the entire collection see [Zbl 1305.30003].


31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
49Q05 Minimal surfaces and optimization
Full Text: DOI


[1] Boyd, Z., Dorff, M., Messick, R., Romney, M., Viertel, R.: Harmonic univalent mappings with singular inner function dilatation. In: 60 years of analytic functions in Lublin—in memory of our professors and friends Jan G. Krzyz, Zdzisław Lewandowski and Wojciech Szapiel, pp. 191-200. Innovation Press Scientific Publishing House University of Economic and Innovation, Lublin (2012) · Zbl 1291.30063
[2] Boyd, Z., Dorff, M., Novak, M., Romney, M., Woloszkiewicz, M.: A class of univalent convolutions of harmonic mappings. Appl. Math. Comput. 234, 326-332 (2014) · Zbl 1301.31001
[3] Clunie, J., Sheil-Small, T.: Harmonic univalent Functions. Ann. Acad. Sci. Fenn. Ser. A.I. Math. 9, 3-25 (1984) · Zbl 0506.30007
[4] Dorff, M.: Some harmonic n-slit mappings. Proc. Am. Math. Soc. 126, 569-576 (1998) · Zbl 0890.30012
[5] Dorff, M.: Convolutions of planar harmonic convex mappings. Complex Var. Theory Appl. 45, 263-271 (2001) · Zbl 1023.30019
[6] Dorff, M.: Anamorphosis, mapping problems, and harmonic univalent functions. In: Explorations in Complex Analysis, pp. 197-269. Mathematical Association of America, Inc., Washington, DC (2012) · Zbl 1303.30010
[7] Dorff, M.: Soap films, differential geometry, and minimal surfaces. In: Explorations in Complex Analysis, pp. 85-159. Mathematical Association of America, Inc., Washington, DC (2012) · Zbl 1311.53001
[8] Dorff, M., Muir, S.: A family of minimal surfaces and univalent planar harmonic mappings. Preprint · Zbl 1476.53029
[9] Dorff, M., Rolf, J.: A collection of online applets that accompany the text. In: Explorations in Complex Analysis. http://www.maa.org/publications/ebooks/software-for-explorations-in-complex-analysis
[10] Dorff, M., Suffridge, T.: The inner mapping radius of harmonic mappings of the unit disk. Complex Var. Elliptic Equ. 33(1-4), 97-103 (1997) · Zbl 0913.30005
[11] Dorff, M., Szynal, J.: Harmonic shears of elliptic integrals. Rocky Mt. J. Math. 35(2), 485-499 (2005) · Zbl 1087.31005
[12] Dorff, M., Novak, M., Woloszkiewicz, M.: Convolutions of harmonic convex mappings. Complex Var. Elliptic Equ. 57(5), 489-503 (2012) · Zbl 1250.31001
[13] Driver, K., Duren, P.: Harmonic shears of regular polygons by hypergeometric functions. J. Math. Anal. App. 239, 72-84 (1999) · Zbl 0937.30006
[14] Duren, P.L.: Univalent Functions. Springer-Verlag, New York (1983) · Zbl 0514.30001
[15] Duren, P.L.: Harmonic Mappings in the Plane. Cambridge University Press, New York (2004) · Zbl 1055.31001
[16] Duren, P.L., Thygerson, W.R.: Harmonic mappings related to Scherk’s saddle-tower minimal surfaces. Rocky Mt. J. Math. 30(2), 555-564 (2000) · Zbl 0982.53008
[17] Goodloe, M.: Hadamard products of convex harmonic mappings. Complex Var. Theory Appl. 47(2), 81-92 (2002) · Zbl 1030.30015
[18] Hengartner, W., Schober, G.: Curvature estimates for some minimal surfaces. In: Complex Analysis, pp. 87-100. Birkhauser, Basel (1988) · Zbl 0664.30012
[19] Jun, S.H.: Curvature estimates for minimal surfaces. Proc. Am. Math. Soc. 114(2), 527-533 (1992) · Zbl 0757.53004
[20] Jun, S.H.: Planar harmonic mappings and curvature estimates. J. Korean Math. Soc. 32(4), 803-814 (1995) · Zbl 0844.30003
[21] Laugesen, R.S.: Planar harmonic maps with inner and Blaschke dilatations. J. Lond. Math. Soc. 56(1), 37-48 (1997) · Zbl 0892.30017
[22] Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689-692 (1936) · Zbl 0015.15903
[23] Li, L., Ponnusamy, S.: Convolutions of slanted half-plane harmonic mappings. Analysis (Munich) 33, 159-176 (2013) · Zbl 1286.30011
[24] Li, L., Ponnusamy, S.: Solution to an open problem on convolutions of harmonic mappings. Complex Var. Elliptic Equ. 58, 1647-1653 (2013) · Zbl 1287.30004
[25] McDougall, J., Schaubroeck, L.: Minimal surfaces over stars. J. Math. Anal. Appl. 340(1), 721-738 (2008) · Zbl 1169.53007
[26] Nowak, M., Woloszkiewicz, M.: Gauss curvature estimates for minimal graphs. Ann. Univ. Mariae Curie-Skodowska Sect. A 65(2), 113-120 (2011) · Zbl 1250.30019
[27] Pommerenke, C.: On starlike and close-to-convex functions. Proc. Lond. Math. Soc. 13(3), 290-304 (1963) · Zbl 0113.28901
[28] Ruscheweyh, St.: Convolutions in Geometric Function Theory. Presses de l’Universite de Montreal, Montreal (1982) · Zbl 0575.30008
[29] Weitsman, A.: Harmonic mappings whose dilatations are singular inner functions. Unpublished manuscript
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.