Global stability and bifurcations of invariant measures for the discrete cocycles of the cardiac conduction system’s equations. (English) Zbl 1317.39008

Authors’ abstract: In the present paper, we study parameter-depending cocycles generated by nonautonomous difference equations. The time-discrete model of the cardiac conduction system is an example of such equations. We construct a cocycle for such a system with a control variable. We present a theorem on the global stability for time-discrete cocycles. We also study the existence of an invariant measure for such a cocycle by using some elements of the Perron-Frobenius operators’ theory and discuss bifurcations of parameter-dependent measures.


39A12 Discrete version of topics in analysis
39A30 Stability theory for difference equations
39A10 Additive difference equations
34D23 Global stability of solutions to ordinary differential equations
37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
Full Text: DOI


[1] Reitmann, V., Dinamicheskie sistemy, attraktory i otsenki ikh razmernosti (Dynamical Systems, Attractors, and Estimates for Their Dimensions), Sankt-Peterburg: Izd-vo St. Peterb. un-ta, 2013.
[2] Reitmann, V; Slepukhin, A, On upper estimates of the Hausdorff dimension of negatively invariant sets of local cocycles, 61-70, (2011) · Zbl 1303.37009
[3] Yakubovich, VA, A frequency theorem in control theory, Sibirsk. Mat. Zh., 14, 384-420, (1973) · Zbl 0257.93024
[4] Arnold, L., Random Dynamical Systems, Springer Monogr. Math., Berlin: Springer, 1998. · Zbl 0906.34001
[5] Baladi, V; Viana, M, Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup., 29, 483-517, (1996) · Zbl 0868.58051
[6] Bandtlow, F; Antoniou, I; Suchanecki, Z, Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces, Comput. Math. Appl., 34, 95-102, (1997) · Zbl 0895.47012
[7] Crauel, H; Flandoli, F, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10, 449-474, (1998) · Zbl 0927.37031
[8] Crauel, H; Arnold, L (ed.); Wihstutz, V (ed.), Lyapunov exponents and invariant measures of stochastic systems on manifolds, 271-291, (1986), Berlin
[9] Glass, L; Guevera, MR; Shrier, A, Universal bifurcations and the classification of cardiac arhythmias, Ann. N. Y. Acad. Sci., 504, 168-178, (1987)
[10] Kloeden, PE; Schmalfuss, B, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14, 141-152, (1997) · Zbl 0886.65077
[11] Leonov, G.A. and Reitmann, V., Lokalisierung der Lösung diskreter Systeme mit instationärer periodischer Nichtlinearität, Z. Angew. Math. Mech., 1986, vol. 66, no. 3, pp. 103-111.
[12] Maltseva, A; Reitmann, V, Bifurcations of invariant measures in discrete-time parameter dependent cocycles, 288, (2013) · Zbl 1349.35042
[13] Reitmann, V., Über Instabilität im ganzen von nichtlinearen diskreten Systemen, Z. Angew. Math. Mech., 1979, vol. 59, pp. 652-655. · Zbl 0442.34053
[14] Reitmann, V., Über die Beschränktheit der Lösungen diskreter nichtstationärer Phasensysteme, ZAA, 1982, vol. 1, no. 1, pp. 83-93. · Zbl 0561.93043
[15] Sun, J; Amellal, F; Glass, L; Billete, J, Alternans and period-doubling bifurcations in atrioventricular nodal conduction, J. Theoret. Biol., 173, 79-91, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.