Bandyopadhyay, Saugata; Dacorogna, Bernard; Sil, Swarnendu Calculus of variations with differential forms. (English) Zbl 1317.49015 J. Eur. Math. Soc. (JEMS) 17, No. 4, 1009-1039 (2015). In order to investigate variational problems involving differential forms, the authors introduce extensions of convexity and some of its multifarious generalizations, such as quasi-convexity, polyconvexity and so on. They provide a detailed analysis of the relationships between the new notions, to which the prefix “ext.” is added, and the classical ones. In the considered cases, “ext.” may stand either for the exterior product or the exterior derivative. The interesting new notions are characterized in several concrete cases, besides that the authors give an example of an ext. one convex function that is not ext. quasiconvex. For this they make use of a well-known result of V. Šverák in [Proc. R. Soc. Edinb., Sect. A 120, No. 1–2, 185–189 (1992; Zbl 0777.49015)]. The authors conclude their paper exhibiting a nice application of the ext. quasiconvexity notion to a minimization problem. Reviewer: Antonio Roberto da Silva (Rio de Janeiro) Cited in 3 ReviewsCited in 10 Documents MSC: 49J45 Methods involving semicontinuity and convergence; relaxation 49J40 Variational inequalities 58A10 Differential forms in global analysis Keywords:calculus of variations; differential forms; quasiconvexity; polyconvexity; ext. one convexity Citations:Zbl 0777.49015 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bandyopadhyay, S., Barroso, A. C., Dacorogna, B., Matias, J.: Differential inclusions for dif- ferential forms, Calc. Var. Partial Differential Equations 28, 449-469 (2007) · Zbl 1136.49006 · doi:10.1007/s00526-006-0049-6 [2] Bandyopadhyay, S., Dacorogna, B., Kneuss, O.: Some new results on differential inclusions for differential forms. Trans. Amer. Math. Soc. 367, 3119-3138 (2015) · Zbl 1319.35314 · doi:10.1090/S0002-9947-2014-06014-5 [3] Bandyopadhyay, S., Sil, S.: Exterior convexity and classical calculus of variations. ESAIM Control Optim. Calc. Var. (2015), to appear · Zbl 1343.49022 [4] Bandyopadhyay, S., Sil, S.: In preparation [5] Csató, G., Dacorogna, B., Kneuss, O.: The Pullback Equation for Differential Forms. Birkhäuser/Springer, New York (2012) · Zbl 1247.58003 · doi:10.1007/978-0-8176-8313-9 [6] Dacorogna, B.: Quasi-convexité et semi-continuité inférieure faible des fonctionnelles non linéaires. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9, 627-644 (1982) [7] Dacorogna, B.: Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals. Lecture Notes in Math. 922, Springer, Berlin (1982) · Zbl 0484.46041 · doi:10.1007/BFb0096144 [8] Dacorogna, B.: Direct Methods in the Calculus of Variations. 2nd ed., Springer, Berlin (2008) · Zbl 1140.49001 [9] Dacorogna, B., Fonseca, I.: A-B quasiconvexity and implicit partial differential equations. Calc. Var. Partial Differential Equations 14, 115-149 (2002) · Zbl 1030.35022 · doi:10.1007/s005260100092 [10] Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30, 1355-1390 (1999) · Zbl 0940.49014 · doi:10.1137/S0036141098339885 [11] Giannetti, F., Verde, A.: Variational integrals for elliptic complexes. Studia Math. 140, 79-98 (2000) · Zbl 0968.58019 [12] Marcellini, P.: Quasiconvex quadratic forms in two dimensions. Appl. Math. Optim. 11, 183- 189 (1984) · Zbl 0567.49007 · doi:10.1007/BF01442177 [13] Morrey, C. B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966) · Zbl 0142.38701 [14] Murat, F.: Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 489-507 (1978) · Zbl 0399.46022 [15] Robbin, J. W., Rogers, R. C., Temple, B.: On weak continuity and the Hodge decomposition. Trans. Amer. Math. Soc. 303, 609-618 (1987) · Zbl 0634.35005 · doi:10.2307/2000687 [16] Serre, D.: Formes quadratiques et calcul des variations. J. Math. Pures Appl. 62, 177-196 (1983) · Zbl 0529.49005 [17] Sil, S.: Ph.D. thesis [18] Stroffolini, B., Verde, A.: X-quasiconvexity in Carnot groups and lower semicontinuity re- sults. Houston J. Math. 35, 975-990 (2009) · Zbl 1171.49012 [19] \check Sverák, V., Quasiconvex functions with subquadratic growth. Proc. Roy. Soc. London Ser. A 433, 723-725 (1991) · Zbl 0741.49016 · doi:10.1098/rspa.1991.0073 [20] \check Sverák, V.: Rank one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120, 185-189 (1992) · Zbl 0777.49015 · doi:10.1017/S0308210500015080 [21] Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics, R. J. Knops (ed.), Res. Notes Math. 39, Pitman, London, 136-212 (1978) · Zbl 0437.35004 [22] Terpstra, F. J.: Die Darstellung biquadratischer Formen als Summen von Quadraten mit An- wendung auf die Variationsrechnung. Math. Ann. 116, 166-180 (1939) · Zbl 0019.35203 · doi:10.1007/BF01597353 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.