Honda, Shouhei Harmonic functions on asymptotic cones with Euclidean volume growth. (English) Zbl 1317.53051 J. Math. Soc. Japan 67, No. 1, 69-126 (2015). Let \(M\) be a complete \(n\)-dimensional Riemannian manifold with nonnegative Ricci curvature. Then, for any point \(m \in M\) and a sequence \(\{R_i\}\) with \(R_i\to \infty\) as \(i \to \infty\), the rescaled Riemannian manifolds \((M, R_i^{-1}d_M, m)\) converge to an asymptotic cone \((M_\infty, m_\infty)\) of \(M\) with respect to the pointed Gromov-Hausdorff topology. Here \(d_M\) is the distance function of \(M\). Introducing the notion of harmonic functions on metric measure spaces due to J. Cheeger [Geom. Funct. Anal. 9, No. 3, 428–517 (1999; Zbl 0942.58018)], we can consider harmonic functions on the asymptotic cone \((M_\infty, m_\infty)\) of \(M\). For \(d \geq 0\), let \(H^d(M_\infty)\) be the space of harmonic functions \(f\) on \(M_\infty\) satisfying that there exists \(C>1\) such that \(|f(x)| \leq C(1+r(x)^d)\), where \(r(x) = d_{M_\infty}(m_\infty, x)\). In this paper, the author proves that for any \(V>0\), there exists \(d(n, V)\geq 1\) such that \[ C(n)^{-1}V_M d^{n-1}\leq \dim H^d(M_\infty)\leq C(n) V_M d^{n-1} \] holds for every \(n\)-dimensional complete Riemannian manifold \(M\) of nonnegative Ricci curvature with \(V_M:= \lim_{R\to \infty}\text{vol}B_R(m)/R^n \geq V\), every \(d \geq d(n, V)\) and every asymptotic cone \((M_\infty, m_\infty)\), where \(C(n)\) is a positive constant depending only on \(n\). The author also gives a relationship between harmonic functions with polynomial growth on \(M\) and that of asymptotic cones and shows that there exists a unique \(d_1 \geq 1\) such that \(H^d(M) = \{\text{constants}\}\) for every \(0 < d < d_1\), \(H^d(M_\infty) = \{\text{constants}\}\) for every \(0 < d < d_1\) and for every asymptotic cone \(M_\infty\), and \(H^{d_1}(\widehat M_\infty) \neq \{\text{constants}\}\) for some asymptotic cone \(\widehat M_\infty\).Second, the author considers the space of harmonic functions with polynomial growth on the metric cone of a compact geodesic space. J. Cheeger and T. H. Colding [Ann. Math. (2) 144, No. 1, 189–237 (1996; Zbl 0865.53037)] shows that \((M_\infty, m_\infty)\) is isometric to a metric cone \((C(X), p)\) of a compact geodesic space \(X\) with \(\text{diam} (X) \leq \pi\). Since, for the \((n-1)\)-dimensional Hausdorff measure \(H^{n-1}\), \(X\) is \(H^{n-1}\)-rectifiable and \((X, H^{n-1})\) satisfies a weak Poincaré inequality, there exists the canonical self-adjoint operator (called Laplacian) \(\Delta_X\) on \(L^2(X)\). Let \(E_\lambda(X)\) be the space of functions on \(X\) spanned by eigenfunctions of \(\Delta_X\) on \(X\) associated with the eigenvalue \(\leq \lambda\). Another main result proved by the author in this paper is the following: For \(d\geq 0\) \[ \dim H^d (C(X)) = \dim E_{d(d+n-2)}(X). \] In particular, we have \(\dim H^d(C(X)) < \infty\), and this property can be considered as a solution of an asymptotic cone’s version of Yau’s conjecture on the growth of harmonic functions. Reviewer: Gabjin Yun (Yongin) Cited in 7 Documents MSC: 53C20 Global Riemannian geometry, including pinching 53C43 Differential geometric aspects of harmonic maps Keywords:asymptotic cone; Gromov-Hausdorff convergence; harmonic functions; Lipschitz functions; Ricci curvature Citations:Zbl 0942.58018; Zbl 0865.53037 PDF BibTeX XML Cite \textit{S. Honda}, J. Math. Soc. Japan 67, No. 1, 69--126 (2015; Zbl 1317.53051) Full Text: DOI Euclid References: [1] F. Almgren, Jr., Almgren’s Big Regularity Paper, World Sci. Monogr. Ser. Math., 1 , World Scientific Publishing Co., Inc., River Edge, NJ, 2000. [2] S. Bando, A. Kasue and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., 97 (1989), 313-349. · Zbl 0682.53045 [3] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428-517. · Zbl 0942.58018 [4] J. Cheeger, Degeneration of Riemannian Metrics under Ricci Curvature Bounds, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 2001. · Zbl 1055.53024 [5] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), 189-237. · Zbl 0865.53037 [6] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), 406-480. · Zbl 0902.53034 [7] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54 (2000), 13-35. · Zbl 1027.53042 [8] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54 (2000), 37-74. · Zbl 1027.53043 [9] J. Cheeger, T. H. Colding and W. P. Minicozzi II, Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature, Geom. Funct. Anal., 5 (1995), 948-954. · Zbl 0871.53032 [10] S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv., 51 (1976), 43-55. · Zbl 0334.35022 [11] S. Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 333-354. · Zbl 0312.53031 [12] T. H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2), 145 (1997), 477-501. · Zbl 0879.53030 [13] T. H. Colding and W. P. Minicozzi II, Generalized Liouville properties of manifolds, Math. Res. Lett., 3 (1996), 723-729. · Zbl 0884.58032 [14] T. H. Colding and W. P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2), 146 (1997), 725-747. · Zbl 0928.53030 [15] T. H. Colding and W. P. Minicozzi II, Harmonic functions with polynomial growth, J. Differential Geom., 46 (1997), 1-77. · Zbl 0914.53027 [16] T. H. Colding and W. P. Minicozzi II, Large scale behavior of kernels of Schrödinger operators, Amer. J. Math., 119 (1997), 1355-1398. · Zbl 0897.58041 [17] T. H. Colding and W. P. Minicozzi II, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., 51 (1998), 113-138. · Zbl 0928.58022 [18] T. H. Colding and W. P. Minicozzi II, Weyl type bounds for harmonic functions, Invent. Math., 131 (1998), 257-298. · Zbl 0919.31004 [19] T. H. Colding and W. P. Minicozzi II, On uniqueness of tangent cones for Einstein manifolds, preprint, arXiv: [20] Y. Ding, Heat kernels and Green’s functions on limit spaces, Comm. Anal. Geom., 10 (2002), 475-514. · Zbl 1018.58013 [21] Y. Ding, An existence theorem of harmonic functions with polynomial growth, Proc. Amer. Math. Soc., 132 (2004), 543-551. · Zbl 1046.53023 [22] H. Donnely and C. Fefferman, Nodal domains and growth of harmonic functions on noncompact manifolds, J. Geom. Anal., 2 (1992), 79-93. · Zbl 0784.31006 [23] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss., 153 , Springer-Verlag, Berlin, New York, 1969. · Zbl 0176.00801 [24] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), 517-547. · Zbl 0589.58034 [25] K. Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, In: Recent Topics in Differential and Analytic Geometry, (ed. T. Ochiai), Adv. Stud. Pure Math., 18 -I, Academic Press, Boston, MA, 1990, pp.,143-238. · Zbl 0754.53004 [26] K. Fukaya, Metric Riemannian geometry, In: Handbook of Differential Geometry. Vol. II, (eds. Franki J. E. Dillen and Leopold C. A. Verstraelen), Elsevier, North-Holland, Amsterdam, 2006, pp.,189-313. · Zbl 1163.53021 [27] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland Math. Library, 23 , North-Holland, Amsterdam, 1980. [28] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics Math., Springer-Verlag, Berlin, 2001. · Zbl 1042.35002 [29] A. A. Grigor’yan, The heat equation on noncompact Riemannian manifolds, English translation in Math. USSR Sb., 72 (1992), 47-77. [30] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152 , Birkhäuser Boston Inc, Boston, MA, 1999, Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. · Zbl 0953.53002 [31] M. Gromov and R. M. Schoen, Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math., 76 (1992), 165-246. · Zbl 0896.58024 [32] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996), 403-415. · Zbl 0859.46022 [33] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1211-1215. · Zbl 0837.46024 [34] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom., 30 (1989), 505-522. · Zbl 0692.35005 [35] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monogr., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. · Zbl 0780.31001 [36] S. Honda, Bishop-Gromov type inequality on Ricci limit spaces, J. Math. Soc. Japan, 63 (2011), 419-442. · Zbl 1252.53040 [37] S. Honda, Ricci curvature and almost spherical multi-suspension, Tohoku Math. J. (2), 61 (2009), 499-522. · Zbl 1198.53043 [38] S. Honda, Ricci curvature and convergence of Lipschitz functions, Comm. Anal. Geom., 19 (2011), 79-158. · Zbl 1253.53031 [39] A. Kasue, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature. II, In: Recent Topics in Differential and Analytic Geometry, (ed. T. Ochiai), Adv. Stud. Pure Math., 18 -I, Academic Press, Boston, MA, 1990, pp.,283-301. · Zbl 0745.31007 [40] A. Kasue, Harmonic functions of polynomial growth on complete manifolds, In: Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990, (eds. Robert E. Greene and S.-T. Yau), Proc. Sympos. Pure Math., 54 , part 1, Amer. Math. Soc., Providence, RI, 1993, pp.,281-290. · Zbl 0811.53036 [41] A. Kasue, Harmonic functions of polynomial growth on complete manifolds. II, J. Math. Soc. Japan, 47 (1995), 37-65. · Zbl 0843.53033 [42] A. Kasue and H. Kumura, Spectral convergence of Riemannian manifolds, Tohoku Math. J. (2), 46 (1994), 147-179. · Zbl 0814.53035 [43] A. Kasue and H. Kumura, Spectral convergence of Riemannian manifolds. II, Tohoku Math. J. (2), 48 (1996), 71-120. · Zbl 0853.58100 [44] A. Kasue and T. Washio, Growth of equivariant harmonic maps and harmonic morphism, Osaka J. Math., 27 (1990), 899-928; Errata, Osaka J. Math., 29 (1992), 419-420. · Zbl 0717.58017 [45] P. Koskela, K. Rajala and N. Shanmugalingam, Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces, J. Funct. Anal., 202 (2003), 147-173. · Zbl 1027.31006 [46] K. Kuwae, Maximum principles for subharmonic functions via local semi-Dirichlet forms, Canadian J. Math., 60 (2008), 822-874. · Zbl 1160.31007 [47] K. Kuwae and T. Shioya, Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599-673. · Zbl 1092.53026 [48] P. Li, Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature, Ann. of Math. (2), 124 (1986), 1-21. · Zbl 0613.58032 [49] P. Li, Harmonic functions of linear growth on K\(\ddot{\mathrm{a}}\)hler manifolds with nonnegative Ricci curvature, Math. Res. Lett., 2 (1995), 79-94. · Zbl 0855.58019 [50] P. Li, The theory of harmonic functions and its relation to geometry, In: Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990, (eds. Robert E. Greene and S.-T. Yau), Proc. Sympos. Pure Math., 54 , part 1, Amer. Math. Soc., Providence, RI, 1993, pp.,307-315. [51] P. Li and R. M. Schoen, \(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math., 153 (1984), 279-301. · Zbl 0556.31005 [52] P. Li and L.-F. Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geom., 29 (1989), 421-425. · Zbl 0668.53023 [53] P. Li and L.-F. Tam, Complete surfaces with finite total curvature, J. Differential Geom., 33 (1991), 139-168. · Zbl 0749.53025 [54] P. Li and L.-F. Tam, Green’s functions, harmonic functions, and volume comparison, J. Differential Geom., 41 (1995), 277-318. · Zbl 0827.53033 [55] P. Li and S.-T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, In: Geometry of the Laplace Operator, Univ. Hawaii, Honolulu, Hawaii, 1979, (eds. R. Osserman and A. Weinstein), Proc. Sympos. Pure Math., 36 , Amer. Math. Soc., Providence, RI, 1980, pp.,205-239. [56] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. · Zbl 0611.58045 [57] F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814. · Zbl 0703.35173 [58] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss., 130 , Springer-Verlag, New York, 1966. · Zbl 0142.38701 [59] G. Perelman, A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone, In: Comparison Geometry, Berkeley, CA, 1993-94, (eds. K. Grove and P. Petersen), Math. Sci. Res. Inst. Publ., 30 , Cambridge University Press, Cambridge, 1997, pp.,165-166. · Zbl 0887.53038 [60] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. · Zbl 0735.58032 [61] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices, 2 (1992), 27-38. · Zbl 0769.58054 [62] R. M. Schoen, A report on some recent progress on nonlinear problems in geometry, In: Surveys Differential Geometry, Cambridge, MA, 1990, Supplement to the Journal of Differential Geometry, 1 , Amer. Math. Soc., Providence, RI, 1991, pp.,201-241. · Zbl 0752.53025 [63] R. M. Schoen and S.-T. Yau, Lectures on Differential Geometry, Conf. Proc. Lecture Notes Geom. Topology, 1 , International Press, 1994. [64] N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math., 45 (2001), 1021-1050. · Zbl 0989.31003 [65] T. Shioya, Convergence of Alexandrov spaces and spectrum of Laplacian, J. Math. Soc. Japan, 53 (2001), 1-15. · Zbl 0974.58030 [66] L. M. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ., 3 , Australian National University, 1983. · Zbl 0546.49019 [67] C. Sormani, Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth, Pacific J. Math., 192 (2000), 183-189. · Zbl 0951.53021 [68] K.-T. Sturm, Analysis on local Dirichlet spaces I. Recurrence, conservativeness and \(L^p\)-Liouville properties, J. Reine Angew. Math., 456 (1994), 173-196. · Zbl 0806.53041 [69] K.-T. Sturm, Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 32 (1995), 275-312. · Zbl 0854.35015 [70] K.-T. Sturm, Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75 (1996), 273-297. · Zbl 0854.35016 [71] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc., 3 (1990), 579-609. [72] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature. II, Invent. Math., 106 (1991), 27-60. · Zbl 0766.53053 [73] J. Wang, Linear growth harmonic functions on complete manifolds, Comm. Anal. Geom., 3 (1995), 683-698. · Zbl 0853.58039 [74] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228. · Zbl 0291.31002 [75] S.-T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. · Zbl 0335.53041 [76] S.-T. Yau, Nonlinear analysis in geometry, Enseign. Math. (2), 33 (1987), 109-158. · Zbl 0631.53002 [77] S.-T. Yau, Open problems in geometry, In: Chern–A Great Geometer of the Twentieth Century, (ed. S.-T. Yau), Internat. Press, Hong Kong, 1992, pp.,275-319. [78] S.-T. Yau, Open problems in geometry, In: Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990, (eds. Robert E. Greene and S.-T. Yau), Proc. Sympos. Pure Math., 54 , part 1, Amer. Math. Soc., Providence, RI, 1993, pp.,1-28. [79] L. Zhang, On the generic eigenvalue flow of a family of metrics and its application, Comm. Anal. Geom., 7 (1999), 259-278. · Zbl 0932.58027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.