×

zbMATH — the first resource for mathematics

Reciprocal processes. A measure-theoretical point of view. (English) Zbl 1317.60004
The authors present a review of the main properties of reciprocal processes. Their measure-reciprocal approach allows for a unified treatment of diffusion and jump processes.
The paper is divided into three sections: Time-symmetry of Markov measures, Reciprocal measures and Reciprocal measures are solutions of entropy minimizing problems.
Section 1 is devoted to the structure of Markov measures and to their time-symmetries. Then, in Section 2, reciprocal measures are introduced and their relationship with Markov measures is investigated. Finally, in Section 3, the authors sketch the tight connection between reciprocal classes and sonic specific entropy minimization problems.
An extensive list of references is given at the end of the paper.
After a short historical presentation in which the reader is reminded that the Markov property is a standard probabilistic notion since its formalization at the beginning of the 20th century, the authors refer to a paper of B. Jamison [Z. Wahrscheinlichkeitstheor. Verw. Geb. 30, 65–86 (1974; Zbl 0326.60033)] and provide some new results. They present a unifying measure-theoretical approach to reciprocal processes. Unlike Jamison, who worked with finite-dimensional distributions using the concept of reciprocal transition probability function, they look at Markov and reciprocal processes as path measures, i.e., measures on the path space.
The authors also provide a possible extension. Thus, it is emphasized that they focus on probability path measures. As a consequence, they drop the word probability: any path probability measure, Markov probability measure or reciprocal probability measure is simply called a path measure, a Markov measure or a reciprocal measure.
The results can easily be extended to \(\sigma\)-finite path measures, e.g., processes admitting an unbounded measure as their initial law.

MSC:
60-02 Research exposition (monographs, survey articles) pertaining to probability theory
60J60 Diffusion processes
60J75 Jump processes (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Aebi, R. (1996). Schrödinger Diffusion Processes . Birkhäuser. · Zbl 0846.60002
[2] Arnold, V. (1966). Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16 , 1, 319-361. · Zbl 0148.45301 · doi:10.5802/aif.233 · numdam:AIF_1966__16_1_319_0
[3] Bernstein, S. (1932). Sur les liaisons entre les grandeurs aléatoires. Verhand. Internat. Math. Kongr. Zürich , Band I. · Zbl 0007.02104
[4] Beurling, A. (1960). An automorphism of product measures. Ann. of Math. 72 , 189-200. · Zbl 0091.13001 · doi:10.2307/1970151
[5] Brenier, Y. (1989). The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Amer. Math. Soc. 2 , 2, 225-255. · Zbl 0697.76030 · doi:10.2307/1990977
[6] Chaumont, L. and Uribe-Bravo, G. (2011). Markovian bridges: Weak continuity and pathwise constructions. Ann. Probab. 39 , 609-647. · Zbl 1217.60066 · doi:10.1214/10-AOP562
[7] Chay, S. (1972). On quasi-Markov random fields. J. Multivariate Anal. 2 , 14-76. · Zbl 0228.60017 · doi:10.1016/0047-259X(72)90010-3
[8] Chung, K. (1968). A Course in Probability Theory . Harcourt, Brace & World, Inc., New York. · Zbl 0159.45701
[9] Chung, K. and Walsh, J. (2005). Markov Processes, Brownian Motion and Time Symmetry . Lecture Notes in Mathematics. Springer Verlag, New York. · Zbl 1082.60001
[10] Chung, K. and Zambrini, J.-C. (2008). Introduction to Random Time and Quantum Randomness . World Scientific.
[11] Clark, J. (1991). A local characterization of reciprocal diffusions. Applied Stoch. Analysis 5 , 45-59. · Zbl 0749.60074
[12] Conforti, G., Dai Pra, P., and Rœlly, S., Reciprocal classes of jump processes. · opus.kobv.de
[13] Conforti, G. and Léonard, C., Reciprocal classes of random walks on graphs. In preparation. · Zbl 1367.60096
[14] Conforti, G., Léonard, C., Murr, R., and Rœlly, S., Bridges of Markov counting processes. Reciprocal classes and duality formulas. Preprint, arXiv: · Zbl 1328.60178 · arxiv.org
[15] Courrège, P. and Renouard, P. (1975). Oscillateurs harmoniques mesures quasi-invariantes sur \(c(\mathbb{R},\mathbb{R})\) et théorie quantique des champs en dimension 1. In Astérisque . Vol. 22-23 . Société Mathématique de France. · Zbl 0316.60009
[16] Cruzeiro, A., Wu, L., and Zambrini, J.-C. (2000). Bernstein processes associated with a Markov process. In Stochastic Analysis and Mathematical Physics, ANESTOC’98. Proceedings of the Third International Workshop , R. Rebolledo, Ed., Trends in Mathematics. Birkhäuser, Boston, 41-71. · Zbl 0965.60101 · doi:10.1007/978-1-4612-1372-7_4
[17] Cruzeiro, A. and Zambrini, J.-C. (1991). Malliavin calculus and Euclidean quantum mechanics, I. J. Funct. Anal. 96 , 1, 62-95. · Zbl 0733.35093 · doi:10.1016/0022-1236(91)90073-E
[18] Dang Ngoc, N. and Yor, M. (1978). Champs markoviens et mesures de Gibbs sur \(\mathbb{R}\). Ann. Sci. Éc. Norm. Supér. , 29-69. · Zbl 0391.60013 · numdam:ASENS_1978_4_11_1_29_0 · eudml:82009
[19] Doob, J. (1953). Stochastic Processes . Wiley. · Zbl 0053.26802
[20] Doob, J. (1957). Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. Fr. 85 , 431-458. · Zbl 0097.34004 · numdam:BSMF_1957__85__431_0 · eudml:86928
[21] Dynkin, E. (1961). Theory of Markov Processes . Prentice-Hall Inc. · Zbl 0091.13605
[22] Fitzsimmons, P., Pitman, J., and Yor, M. (1992). Markovian bridges: Construction, Palm interpretation, and splicing. Progr. Probab. 33 , 101-134. · Zbl 0844.60054 · doi:10.1007/978-1-4612-0339-1_5
[23] Föllmer, H. (1988). Random fields and diffusion processes, in École d’été de Probabilités de Saint-Flour XV-XVII-1985-87 . Lecture Notes in Mathematics, Vol. 1362 . Springer, Berlin. · Zbl 0661.60063
[24] Föllmer, H. and Gantert, N. (1997). Entropy minimization and Schrödinger processes in infinite dimensions. Ann. Probab. 25 , 2, 901-926. · Zbl 0876.60063 · doi:10.1214/aop/1024404423
[25] Georgii, H.-O. (2011). Gibbs measures and phase transitions. In Studies in Mathematics , Second ed. Vol. 9 . Walter de Gruyter. · Zbl 1225.60001
[26] Jamison, B. (1970). Reciprocal processes: The stationary Gaussian case. Ann. Math. Statist. 41 , 1624-1630. · Zbl 0248.60030 · doi:10.1214/aoms/1177696805
[27] Jamison, B. (1974). Reciprocal processes. Z. Wahrsch. verw. Geb. 30 , 65-86. · Zbl 0326.60033 · doi:10.1007/BF00532864
[28] Jamison, B. (1975). The Markov processes of Schrödinger. Z. Wahrsch. verw. Geb. 32 , 4, 323-331. · Zbl 0365.60064 · doi:10.1007/BF00535844
[29] Kallenberg, O. (1981). Splitting at backward times in regenerative sets. Annals Probab. 9 , 781-799. · Zbl 0526.60061 · doi:10.1214/aop/1176994308
[30] Kolmogorov, A. (1936). Zur Theorie der Markoffschen Ketten. Mathematische Annalen 112 .
[31] Krener, A. (1988). Reciprocal diffusions and stochastic differential equations of second order. Stochastics 24 , 393-422. · Zbl 0653.60048 · doi:10.1080/17442508808833525
[32] Kullback, S. and Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics 22 , 79-86. · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[33] Léonard, C., Some properties of path measures. To appear in Séminaire de probabilités de Strasbourg, vol. 46 . Preprint, arXiv: · Zbl 1390.60279 · arxiv.org
[34] Léonard, C. (2014). A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34 , 4, 1533-1574. · Zbl 1277.49052
[35] Meyer, P.-A. (1967). Processus de Markov . Lecture Notes in Mathematics, Vol. 26 . Springer Verlag, New York. · Zbl 0189.51403 · doi:10.1007/BFb0075148
[36] Murr, R. (2012). Reciprocal classes of Markov processes. An approach with duality formulae. Ph.D. thesis, Universität Potsdam, . · opus.kobv.de
[37] Nagasawa, M. (1993). Schrödinger Equations and Diffusions Theory . Monographs in Mathematics, Vol. 86 . Birkhäuser. · Zbl 0780.60003
[38] Nelson, E. (1967). Dynamical Theories of Brownian Motion . Princeton University Press. Second edition (2001) at: . · Zbl 0165.58502 · www.math.princeton.edu
[39] Osada, H. and Spohn, H. (1999). Gibbs measures relative to Brownian motion. Annals Probab. 27 , 1183-1207. · Zbl 0965.60095 · doi:10.1214/aop/1022677444
[40] Privault, N. and Zambrini, J.-C. (2004). Markovian bridges and reversible diffusions with jumps. Ann. Inst. H. Poincaré. Probab. Statist. 40 , 599-633. · Zbl 1060.60075 · doi:10.1016/j.anihpb.2003.08.001 · numdam:AIHPB_2004__40_5_599_0 · eudml:77826
[41] Rœlly, S. (2014). Reciprocal processes. A stochastic analysis approach. In Modern Stochastics with Applications . Optimization and Its Applications, Vol. 90 . Springer, 53-67. · Zbl 1338.60192
[42] Rœlly, S. and Thieullen, M. (2004). A characterization of reciprocal processes via an integration by parts formula on the path space. Probab. Theory Related Fields 123 , 97-120. · Zbl 1007.60023 · doi:10.1007/s004400100184
[43] Rœlly, S. and Thieullen, M. (2005). Duality formula for the bridges of a brownian diffusion: Application to gradient drifts. Stochastic Processes and Their Applications 115 , 1677-1700. · Zbl 1079.60036 · doi:10.1016/j.spa.2005.04.010
[44] Royer, G. and Yor, M. (1976). Représentation intégrale de certaines mesures quasi-invariantes sur \(c(\mathbb{R});\) mesures extrémales et propriété de Markov. Ann. Inst. Fourier 26 , 7-24. · Zbl 0295.28025 · doi:10.5802/aif.610 · numdam:AIF_1976__26_2_7_0 · eudml:74287
[45] Schrödinger, E. (1931). Über die Umkehrung der Naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144 , 144-153. · Zbl 0001.37503
[46] Schrödinger, E. (1932). Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2 , 269-310. · Zbl 0004.42505 · numdam:AIHP_1932__2_4_269_0 · eudml:78968
[47] Thieullen, M. (1993). Second order stochastic differential equations and non-gaussian reciprocal diffusions. Probab. Theory Related Fields 97 , 231-257. · Zbl 0793.60051 · doi:10.1007/BF01199322
[48] Thieullen, M. (2002). Reciprocal diffusions and symmetries of parabolic PDE: The nonflat case. Potential Analysis 16 , 1, 1-28. · Zbl 0991.35041 · doi:10.1023/A:1024813508835
[49] Thieullen, M. and Zambrini, J.-C. (1997a). Probability and quantum symmetries. I. The theorem of Noether in Schrödinger’s Euclidean quantum mechanics. Ann. Inst. H. Poincaré Phys. Théor. 67 , 297-338. · Zbl 0897.60062 · numdam:AIHPA_1997__67_3_297_0 · eudml:76771
[50] Thieullen, M. and Zambrini, J.-C. (1997b). Symmetries in the stochastic calculus of variations. Probab. Theory Related Fields 107 , 3, 401-427. · Zbl 0868.60064 · doi:10.1007/s004400050091
[51] van Putten, C. and van Schuppen, J. (1985). Invariance properties of the conditional independence relation. Ann. Probab. 13 , 934-945. · Zbl 0576.60002 · doi:10.1214/aop/1176992915
[52] Vuillermot, P. and Zambrini, J.-C. (2012). Bernstein diffusions for a class of linear parabolic PDEs. Journal of Theor. Probab. , 1-44.
[53] Wentzell, A. (1981). A course in the theory of stochastic processes . Mc Graw-Hill. · Zbl 0502.60001
[54] Zambrini, J.-C., The research program of stochastic deformation (with a view toward geometric mechanics). To be published in Stochastic Analysis. A Series of Lectures . Birkhaüser. Preprint, arXiv: · arxiv.org
[55] Zambrini, J.-C. (1986). Variational processes and stochastic version of mechanics. Journal of Mathematical Physics 27 , 2307-2330. · Zbl 0623.60102 · doi:10.1063/1.527002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.