Andrieu, Christophe; Tadić, Vladislav B.; Vihola, Matti On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic. (English) Zbl 1317.65004 Ann. Appl. Probab. 25, No. 1, 1-45 (2015). A model of controlled Markov chains is considered in which the transition probabilities \(P_\vartheta(x,A)\) depend on some parameter \(\vartheta\). The conditional distribution of the chain at the (\(i+1\))-th step given the past is \(X_{i+1}|(\vartheta_0,X_0,\dots,X_i)\sim P_{\vartheta_i}(X_i,\cdot)\), and \(\vartheta_{i+1}=\varphi_{i+1}(\vartheta_0,X_0,\dots,X_{i+1})\), where \(\varphi_i\), \(i=1,2\dots\) is a family of nonrandom mappings. A Lyapunov function technique is used to establish recurrence of the joint process \((\vartheta_i,X_i)\) to a set. The authors describe how to combine a joint Lyaunov function from two individual functions for \(X\) and \(\vartheta\). The technique applies even in situations where the dynamics exhibits a time-scale separation.The results are applied to the stability analysis of Robbins-Monro stochastic approximation algorithms and adaptive Markov chain Monte Carlo algorithms. Reviewer: R. E. Maiboroda (Kyïv) Cited in 5 Documents MSC: 65C05 Monte Carlo methods 60J22 Computational methods in Markov chains 60J05 Discrete-time Markov processes on general state spaces 65C40 Numerical analysis or methods applied to Markov chains Keywords:Lyaunov function; reccurent Markov Chain; stability; controlled Markov Chain; Robbins-Monro stochastic approximation; adaptive Markov chain Monte Carlo algorithms × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Andrieu, C. and Moulines, É. (2006). On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16 1462-1505. · Zbl 1114.65001 · doi:10.1214/105051606000000286 [2] Andrieu, C., Moulines, É. and Priouret, P. (2005). Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 283-312. · Zbl 1083.62073 · doi:10.1137/S0363012902417267 [3] Andrieu, C. and Robert, C. P. (2001). Controlled MCMC for optimal sampling. Technical Report 0125, Cahiers de Mathématiques du Ceremade, Univ. Paris-Dauphine. [4] Andrieu, C. and Vihola, M. (2014). Markovian stochastic approximation with expanding projections. Bernoulli 20 545-585. · Zbl 1316.62124 · doi:10.3150/12-BEJ497 [5] Atchadé, Y. and Fort, G. (2010). Limit theorems for some adaptive MCMC algorithms with subgeometric kernels. Bernoulli 16 116-154. · Zbl 1215.60046 · doi:10.3150/09-BEJ199 [6] Atchadé, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 815-828. · Zbl 1085.62097 · doi:10.3150/bj/1130077595 [7] Benveniste, A., Métivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximations. Applications of Mathematics ( New York ) 22 . Springer, Berlin. Translated from the French by Stephen S. Wilson. · Zbl 0752.93073 [8] Delyon, B. and Juditsky, A. (1993). Accelerated stochastic approximation. SIAM J. Optim. 3 868-881. · Zbl 0801.62071 · doi:10.1137/0803045 [9] Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Efficient Metropolis jumping rules. In Bayesian Statistics , 5 ( Alicante , 1994) 599-607. Oxford Univ. Press, New York. [10] Haario, H., Saksman, E. and Tamminen, J. (1999). Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Statist. 14 375-395. · Zbl 0941.62036 · doi:10.1007/s001800050022 [11] Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7 223-242. · Zbl 0989.65004 · doi:10.2307/3318737 [12] Jarner, S. F. and Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361. · Zbl 0997.60070 · doi:10.1016/S0304-4149(99)00082-4 [13] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, London. · Zbl 0925.60001 [14] Saksman, E. and Vihola, M. (2010). On the ergodicity of the adaptive Metropolis algorithm on unbounded domains. Ann. Appl. Probab. 20 2178-2203. · Zbl 1209.65004 · doi:10.1214/10-AAP682 [15] Vihola, M. (2011). On the stability and ergodicity of adaptive scaling Metropolis algorithms. Stochastic Process. Appl. 121 2839-2860. · Zbl 1234.65017 · doi:10.1016/j.spa.2011.08.006 [16] Younes, L. (1999). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics Stochastics Rep. 65 177-228. · Zbl 0949.65006 · doi:10.1080/17442509908834179 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.