Itoh, Tsuyoshi; Mizusawa, Yasushi; Ozaki, Manabu On the \(\mathbb Z_{p}\)-ranks of tamely ramified Iwasawa modules. (English) Zbl 1318.11141 Int. J. Number Theory 9, No. 6, 1491-1503 (2013). Cited in 2 ReviewsCited in 10 Documents MSC: 11R23 Iwasawa theory 11R18 Cyclotomic extensions Keywords:\(\mathbb Z_{p}\)-extension; Iwasawa module; tame ramification PDF BibTeX XML Cite \textit{T. Itoh} et al., Int. J. Number Theory 9, No. 6, 1491--1503 (2013; Zbl 1318.11141) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1112/S0025579300003703 · Zbl 0171.01105 [2] DOI: 10.2307/2374108 · Zbl 0463.12002 [3] DOI: 10.2307/1971116 · Zbl 0443.12001 [4] DOI: 10.1016/j.jnt.2005.09.004 · Zbl 1145.11074 [5] DOI: 10.2307/2373625 · Zbl 0334.12013 [6] DOI: 10.1142/S0129167X96000384 · Zbl 0881.11075 [7] DOI: 10.1090/S0002-9904-1959-10317-7 · Zbl 0089.02402 [8] K. Iwasawa, Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki (Kinokuniya, Tokyo, 1973) pp. 1–11. [9] DOI: 10.2748/tmj/1178229453 · Zbl 0468.12004 [10] DOI: 10.2748/tmj/1178229880 · Zbl 0408.12006 [11] DOI: 10.1016/0022-314X(80)90042-6 · Zbl 0455.12007 [12] DOI: 10.1016/0022-314X(82)90069-5 · Zbl 0493.12015 [13] DOI: 10.3792/pjaa.76.163 · Zbl 0990.11065 [14] DOI: 10.1007/978-3-540-37889-1 [15] Ozaki M., Int. J. Open Problems Comput. Math. 2 pp 342– (2009) [16] Salle L., Osaka J. Math. 47 pp 921– (2010) [17] DOI: 10.1007/BF01389158 · Zbl 0465.12001 [18] DOI: 10.1007/978-1-4612-1934-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.