zbMATH — the first resource for mathematics

Generalized boundary value problems for nonlinear fractional Langevin equations. (English) Zbl 1318.34008
The authors study existence results for generalized boundary value problems for nonlinear fractional Langevin equations. The proof is based on the well-known Banach’s contraction mapping principle, Krasnoselskii’s fixed point theorem and the nonlinear contraction mapping.
Their work improve earlier results: (i) the boundary conditions fit more physical measurements; (ii) the nonlinear term satisfies a nonlinear D-contraction and linear growth conditions; (iii) their assumptions are weakened and easy to check.
Finally, they give several examples to illustrate their main result.
34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: Link
[1] Baleanu, D., Machado, J. A. T., Luo, A. C.-J.: Fractional Dynamics and Control. Springer, Berlin, 2012. · Zbl 1231.93003
[2] Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics Vol. 2014, dmlbpublisherSpringer, Berlin, 2010. · Zbl 1215.34001
[3] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Vol. 204, Elsevier Science, 2006. · Zbl 1092.45003
[4] Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, 2009. · Zbl 1188.37002
[5] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, 1993. · Zbl 0789.26002
[6] Michalski, M. W.: Derivatives of Noninteger Order and Their Applications. Dissertationes Mathematicae 328, Inst. Math., Polish Acad. Sci., 1993. · Zbl 0880.26007
[7] Podlubny, I.: Fractional Differential Equations. Academic Press, 1999. · Zbl 0924.34008
[8] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. dmlbpublisherSpringer, 2011.
[9] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361-2370. · Zbl 1308.34104
[10] Staněk, S.: Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation. Cent. Eur. J. Math. 11 (2013), 574-593. · Zbl 1262.34008
[11] O’Regan, D., Staněk, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71 (2013), 641-652. · Zbl 1268.34023
[12] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for mixed problems of singular fractional differential equations. Mathematische Nachrichten 11 (2011), 1-15.
[13] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear frcational differentil equations. J. Math. Anal. Appl. 37 (2010), 57-68. · Zbl 1206.34009
[14] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973-1033. · Zbl 1198.26004
[15] Ahmad, B., Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 35 (2010), 295-304. · Zbl 1245.34008
[16] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., TMA 72 (2010), 916-924. · Zbl 1187.34026
[17] Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340-1350. · Zbl 1209.34096
[18] Mophou, G. M., N’Guérékata, G. M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216 (2010), 61-69. · Zbl 1191.34098
[19] Wang, J., Fec\breve kan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dynam. Part. Differ. Eq. 8 (2011), 345-361. · Zbl 1264.34014
[20] Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal., TMA 74 (2011), 5929-5942. · Zbl 1223.93059
[21] Zhang, S.: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278 (2003), 136-148. · Zbl 1026.34008
[22] Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., RWA 11 (2010), 4465-4475. · Zbl 1260.34017
[23] Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for \(p\)-type fractional neutral differential equations. Nonlinear Anal., TMA 71 (2009), 2724-2733. · Zbl 1175.34082
[24] Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001), 1-4.
[25] Fa, K. S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73, 061104 (2006), 1-4.
[26] Fa, K. S.: Fractional Langevin equation and Riemann-CLiouville fractional derivative. Eur. Phys. J. E 24 (2007), 139-143.
[27] Kobolev, V., Romanov, E.: Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 139 (2000), 470-476.
[28] Picozzi, S., West, B.: Fractional Langevin model of memory in financial markets. Phys. Rev. E 66, 046118 (2002), 1-12.
[29] Bazzani, A., Bassi, G., Turchetti, G.: Diffusion and memory effects for stochastic processes and fractional Langevin equations. Physica A 324 (2003), 530-550. · Zbl 1050.82029
[30] Lim, S. C., Li, M., Teo, L. P.: Langevin equation with two fractional orders. Phys. Lett. A 372 (2008), 6309-6320. · Zbl 1225.82049
[31] Ahmad, B., Nieto, J. J.: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Difference Equ. 2010, ID 649486 (2010), 1-10. · Zbl 1207.34007
[32] Ahmad, B., Eloe, P.: A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices. Commun. Appl. Nonlinear Anal. 17 (2010), 69-80. · Zbl 1275.34005
[33] Ahmad, B., Nieto, J. J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., RWA 13 (2012), 599-606. · Zbl 1238.34008
[34] Chen, A., Chen, Y.: Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions. Bound. Value Probl. 2011, ID 516481 (2011), 1-17. · Zbl 1228.34016
[35] Ibrahim, R. W.: Existence of nonlinear Lane-Emden equation of fractional order. Math. Notes, Miskolc 13 (2012), 39-52. · Zbl 1265.34216
[36] Sandev, T., Tomovski, Ž., Dubbeldam, J. L. A.: Generalized Langevin equation with a three parameter Mittag-Leffler noise. Physica A 390 (2011), 3627-3636.
[37] Sandev, T., Metzler, R., Tomovski, Ž.: Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 15 (2012), 426-450. · Zbl 1274.82045
[38] Smart, D. R.: Fixed Point Theorems. Cambridge University Press, Cambridge, 1980. · Zbl 0427.47036
[39] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3129-3139. · Zbl 1298.45011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.