×

zbMATH — the first resource for mathematics

From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields. (English) Zbl 1318.34045
Summary: In the topological classification of phase portraits no distinctions are made between a focus and a node and neither are they made between a strong and a weak focus or between foci of different orders. These distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The distinction between the one direction node and the two directions node, which plays a role in understanding the behavior of solution curves around the singularities at infinity, is also missing in the topological classification.
In this work we introduce the notion of geometric equivalence relation of singularities which incorporates these important purely algebraic features. The geometric equivalence relation is finer than the topological one and also finer than the qualitative equivalence relation introduced in [Q. Jiang and J. Llibre, Qual. Theory Dyn. Syst. 6, No. 1, 87–167 (2005; Zbl 1131.34304)]. We also list all possibilities we have for finite and infinite singularities, taking into consideration these finer distinctions, and introduce notation for each one of them.
In this work we give the classification theorem and bifurcation diagram in the 12-dimensional parameter space, using the geometric equivalence relation, of the class of quadratic systems according to the configuration of singularities at infinity of the systems. Our classification theorem, stated in terms of invariant polynomials, is an algorithm for computing the geometric configurations of infinite singularities for any family of quadratic systems, in any normal form.

MSC:
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
58K45 Singularities of vector fields, topological aspects
34C41 Equivalence and asymptotic equivalence of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] J.C. Artés and J. Llibre, Quadratic Hamiltonian vector fields , J. Diff. Equat. 107 (1994), 80-95. · Zbl 0791.34048 · doi:10.1006/jdeq.1994.1004
[2] J.C. Artés, J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus of second order , Inter. J. Bifurc. Chaos 16 (2006), 3127-3194. · Zbl 1124.34014 · doi:10.1142/S0218127406016720
[3] J.C. Artés, J. Llibre and N.I. Vulpe, Singular points of quadratic systems : A complete classification in the coefficient space \(\mathbb{R}^{12}\) , Inter. J. Bifurc. Chaos 18 (2008), 313-362. · Zbl 1206.34051 · doi:10.1142/S021812740802032X
[4] —-, Complete geometric invariant study of two classes of quadratic systems , Electr. J. Diff. Equat. 2012 (2012), 1-35.
[5] —-, Quadratic systems with an integrable saddle : A complete classification in the coefficient space \(\mathbb{R}^{12}\) , Nonlin. Anal. 75 (2012), 5416-5447. · Zbl 1253.34036 · doi:10.1016/j.na.2012.04.043
[6] V.A. Baltag, Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems , Bull. Acad. Sci. Moldova Math. 2 (2003), 31-46. · Zbl 1051.34022
[7] V.A. Baltag and N.I. Vulpe, Affine-invariant conditions for determining the number and multiplicity of singular points of quadratic differential systems , Izv. Akad. Nauk Resp. Moldova Math. 1 (1993), 39-48. · Zbl 0842.34028
[8] —-, Total multiplicity of all finite critical points of the polynomial differential system , Differ. Equat. Dynam. Syst. 5 (1997), 455-471. · Zbl 0942.34027
[9] I. Bendixson, Sur les courbes définies par des équations différentielles , Acta Math. 24 (1901), 1-88. · JFM 31.0328.03 · doi:10.1007/BF02403068
[10] Iu. Calin, On rational bases of \(GL(2,\mathbb{R})\)-comitants of planar polynomial systems of differential equations , Bull. Acad. Sci. Moldova Math. 2 (2003), 69-86. · Zbl 1050.34049
[11] W.A. Coppel, A survey of quadratic systems , J. Differ. Equat. 2 (1966), 293-304. · Zbl 0143.11903 · doi:10.1016/0022-0396(66)90070-2
[12] F. Dumortier, Singularities of vector fields on the plane , J. Differ. Equat. 23 (1977), 53-106. · Zbl 0346.58002 · doi:10.1016/0022-0396(77)90136-X
[13] —-, Singularities of vector fields , Monogr. Mat. 32 , Rio de Janeiro, 1978.
[14] F. Dumortier and P. Fiddelaers, Quadratic models for generic local 3-parameter bifurcations on the plane , Trans. Amer. Math. Soc. 326 (1991), 101-126. · Zbl 0737.58039 · doi:10.2307/2001857
[15] F. Dumortier, J. Llibre and J.C. Artés, Qualitative theory of planar differential systems , Universitext, Springer-Verlag, New York, 2008.
[16] E.A. González Velasco, Generic properties of polynomial vector fields at infinity , Trans. Amer. Math. Soc. 143 (1969), 201-222. · Zbl 0187.34401 · doi:10.2307/1995243
[17] J.H. Grace and A. Young, The algebra of invariants , Stechert, New York, 1941. · Zbl 1206.13003
[18] D. Hilbert, Mathematische probleme , in Nachr. Ges. Wiss., Göttingen Math.-Phys. Kl., 1900, 253-297. · JFM 31.0068.03
[19] Q. Jiang and J. Llibre, Qualitative classification of singular points , Qual. Theor. Dynam. Syst. 6 (2005), 87-167. · Zbl 1131.34304 · doi:10.1007/BF02972669
[20] J. Llibre and D. Schlomiuk, Geometry of quadratic differential systems with a weak focus of third order , Canad. J. Math. 56 (2004), 310-343. · Zbl 1058.34034 · doi:10.4153/CJM-2004-015-2
[21] P.J. Olver, Classical invariant theory , Lond. Math. Soc. Student Texts 44 , Cambridge University Press, Cambridge, 1999.
[22] I. Nikolaev and N. Vulpe, Topological classification of quadratic systems at infinity , J. Lond. Math. Soc. 2 (1997), 473-488. · Zbl 0869.34027 · doi:10.1112/S0024610796004735
[23] J. Pal and D. Schlomiuk, Summing up the dynamics of quadratic Hamiltonian systems with a center , Canad. J. Math. 56 (1997), 583-599. · Zbl 0879.34038 · doi:10.4153/CJM-1997-027-0
[24] M.N. Popa, Applications of algebraic methods to differential systems , Romania, Piteşti Univ., The Flower Power Edit., 2004. · Zbl 1079.54507
[25] R. Roussarie, Smoothness property for bifurcation diagrams , Publ. Matem. 56 (1997), 243-268. · Zbl 0888.34032 · doi:10.5565/PUBLMAT_41197_15 · eudml:41294
[26] D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center , Trans. Amer. Math. Soc. 338 (1993), 799-841. · Zbl 0777.58028 · doi:10.2307/2154430
[27] D. Schlomiuk and J. Pal, On the geometry in the neighborhood of infinity of quadratic differential phase portraits with a weak focus , Qual. Theor. Dynam. Syst. 2 (2001), 1-43. · Zbl 0989.34018 · doi:10.1007/BF02969379
[28] D. Schlomiuk and N.I. Vulpe, Geometry of quadratic differential systems in the neighborhood of infinity , J. Differ. Equat. 215 (2005), 357-400. · Zbl 1090.34024 · doi:10.1016/j.jde.2004.11.001 · arxiv:math/0405026
[29] —-, Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity , Rocky Mountain J. Math. 38 (2008). 1-60. · Zbl 1175.34037 · doi:10.1216/RMJ-2008-38-6-2015
[30] —-, Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four , Bull. Acad. Sci. Moldova Math. 1 (2008), 27-83. · Zbl 1159.34329 · mi.mathnet.ru
[31] —-, The full study of planar quadratic differential systems possessing a line of singularities at infinity , J. Dynam. Differ. Equat. 20 (2008), 737-775. · Zbl 1168.34024 · doi:10.1007/s10884-008-9117-2
[32] —-, Global classification of the planar Lotka-Volterra differential system according to their configurations of invariant straight lines , J. Fixed Point Theory Appl. 8 (2010), 177-245. · Zbl 1205.34073 · doi:10.1007/s11784-010-0031-y
[33] —-, The global topological classification of the Lotka-Volterra quadratic differential systems , Electr. J. Diff. Equat. 2012 (2012), 1-69.
[34] E. Seidenberg, Reduction of singularities of the differential equation \(Ady=Bdx\) , Amer. J. Math. 90 (1968), 248-269. · Zbl 0159.33303 · doi:10.2307/2373435
[35] K.S. Sibirskii, Introduction to the algebraic theory of invariants of differential equations , Nonlin. Sci.: Theor. Appl., Manchester University Press, Manchester, 1988.
[36] N.I. Vulpe, Affine-invariant conditions for the topological discrimination of quadratic systems with a center , Diff. Equat. 19 (1983), 273-280. · Zbl 0556.34019
[37] —-, Polynomial bases of comitants of differential systems and their applications in qualitative theory “Ştiinţa,” Kishinev, 1986 (in Russian).
[38] H. Żołądek, Quadratic systems with center and their perturbations , J. Diff. Equat. 109 (1994), 223-273. · Zbl 0797.34044 · doi:10.1006/jdeq.1994.1049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.