Berkani, M.; Kachad, M.; Zariouh, H. Extended Weyl-type theorems for direct sums. (English) Zbl 1318.47019 Demonstr. Math. 47, No. 2, 411-422 (2014). In this paper, the authors study the stability of extended Weyl and Browder type theorems for the orthogonal direct sum \(S\bigoplus T\), where \(S\) and \(T\) are bounded linear operators acting on a Banach space. The authors characterize the preservation of generalized a-Browder’s theorem and the property \((ab)\) under the direct sum \(S\bigoplus T\). Furthermore, some recent results are improved by removing certain superfluous assumptions. Reviewer: Carlos R. Carpintero (Cumaná) Cited in 1 Document MSC: 47A53 (Semi-) Fredholm operators; index theories 47A10 Spectrum, resolvent 47A11 Local spectral properties of linear operators Keywords:generalized a-Browder’s theorem; property (\(gab\)); Weyl type theorems; direct sums; property (\(gaw\)); B-Weyl spectrum PDF BibTeX XML Cite \textit{M. Berkani} et al., Demonstr. Math. 47, No. 2, 411--422 (2014; Zbl 1318.47019) Full Text: DOI References: [1] P. Aiena, P. Peña, Variations on Weyl’s theorem, J. Math. Anal. Appl. 324 (2006), 566-579.; · Zbl 1101.47001 [2] M. Amouch, H. Zguitti, On the equivalence of Browder’s and generalized Browder’s theorem, Glasg. Math. J. 48 (2006), 179-185.; · Zbl 1097.47012 [3] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34(2) (1999), 244-249.; · Zbl 0939.47010 [4] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130(6) (2002), 1717-1723.; · Zbl 0996.47015 [5] M. Berkani, N. Castro, S. V. Djordjevic, Single valued extension property and generalized Weyl’s theorem, Math. Bohem. 131(1) (2006), 29-38.; · Zbl 1114.47015 [6] M. Berkani, J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci.Math. (Szeged) 69 (2003), 359-376.; · Zbl 1050.47014 [7] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457-465.; · Zbl 0995.47008 [8] M. Berkani, H. Zariouh, New extended Weyl type theorems, Mat. Vesnik 62(2) (2010), 145-154.; · Zbl 1258.47020 [9] M. Berkani, H. Zariouh, Perturbation results for Weyl type theorems, Acta Math.Univ. Comenian. (N.S.) 80 (2011), 119-132.; · Zbl 1261.47022 [10] M. Berkani, H. Zariouh, Weyl-type Theorems for direct sums, Bull. Korean. Math.Soc. 49(5) (2012), 1027-1040.; · Zbl 1263.47016 [11] B. P. Duggal, C. S. Kubrusly, Weyl’s theorem for direct sums, Studia Sci. Math.Hungar. 44 (2007), 275-290.; · Zbl 1164.47019 [12] S. V. Djordjevi_c, Y. M. Han, A note on Weyl’s theorem for operator matrices, Proc.Amer. Math. Soc. 131(8) (2003), 2543-2547.; · Zbl 1041.47006 [13] A. Gupta, N. Kashyap, Generalized a-Weyl’s theorem for direct sums, Mat. Vesnik 62(4) (2010), 265-270.; · Zbl 1258.47008 [14] Y. M. Han, S. V. Djordjevi_c, a-Weyl’s theorem for operator matrices, Proc. Amer.Math. Soc. 130(3) (2001), 715-722.; · Zbl 0994.47013 [15] R. E. Harte, Inversibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.; · Zbl 0636.47001 [16] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon, Oxford, 2000.; · Zbl 0957.47004 [17] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), 131-138.; · Zbl 0965.47011 [18] M. Mbekhta, M. Müller, On the axiomatic theory of spectrum II , Studia Math. 119(2) (1996), 129-147.; · Zbl 0857.47002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.