Holomorphic Lagrangian branes correspond to perverse sheaves. (English) Zbl 1318.53100

Summary: Let \(X\) be a compact complex manifold, \(D_c^b(X)\) be the bounded derived category of constructible sheaves on \(X\), and \(\mathrm{Fuk}(T^*X)\) be the Fukaya category of \(T^*X\). A Lagrangian brane in \(\mathrm{Fuk}(T^*X)\) is holomorphic if the underlying Lagrangian submanifold is complex analytic in \(T^*X_{\mathbb{C}}\), the holomorphic cotangent bundle of \(X\). We prove that under the quasiequivalence between \(D^b_c(X)\) and \(\mathrm{DFuk}(T^*X)\) established by Nadler and Zaslow, holomorphic Lagrangian branes with appropriate grading correspond to perverse sheaves.


53D40 Symplectic aspects of Floer homology and cohomology
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
Full Text: DOI arXiv


[1] G Alston, Floer cohomology of real Lagrangians in the Fermat quintic threefold, PhD Thesis, The University of Wisconsin Madison (2010)
[2] D Auroux, A beginner’s introduction to Fukaya categories (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 85 · Zbl 1325.53001
[3] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, Astérisque 100, Soc. Math. France (1982) 5 · Zbl 0536.14011
[4] L van den Dries, C Miller, Geometric categories and \(o\)-minimal structures, Duke Math. J. 84 (1996) 497 · Zbl 0889.03025
[5] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96 · Zbl 0938.32009
[6] M Goresky, R MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. 14, Springer (1988) · Zbl 0639.14012
[7] F R Harvey, H B Lawson Jr., Finite volume flows and Morse theory, Ann. of Math. 153 (2001) 1 · Zbl 1001.58005
[8] R Hotta, K Takeuchi, T Tanisaki, \(D\)-modules, perverse sheaves and representation theory, Progress in Math. 236, Birkhäuser (2008) · Zbl 1136.14009
[9] A Kapustin, \(A\)-branes and noncommutative geometry,
[10] A Kapustin, E Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1 · Zbl 1128.22013
[11] M Kashiwara, P Schapira, Sheaves on manifolds, Grundl. Math. Wissen. 292, Springer (1990) · Zbl 0709.18001
[12] M Kontsevich, Y Soibelman, Homological mirror symmetry and torus fibrations (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 203 · Zbl 1072.14046
[13] D B Massey, Stratified Morse theory: Past and present, Pure Appl. Math. Q. 2 (2006) 1053 · Zbl 1108.57023
[14] D Nadler, Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563 · Zbl 1197.53116
[15] D Nadler, E Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233 · Zbl 1227.32019
[16] Y Peterzil, S Starchenko, Complex analytic geometry and analytic-geometric categories, J. Reine Angew. Math. 626 (2009) 39 · Zbl 1168.03029
[17] W Schmid, K Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996) 451 · Zbl 0851.32011
[18] P Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Adv. Math., European Math. Soc. (2008) · Zbl 1159.53001
[19] J C Sikorav, Some properties of holomorphic curves in almost complex manifolds (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.