×

zbMATH — the first resource for mathematics

Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. (English) Zbl 1318.93009
Summary: This paper investigates the distributed finite-time consensus problem of second-order Multi-Agent Systems (MAS) in the presence of bounded disturbances. Based on the continuous homogeneous finite-time consensus protocol for the nominal MAS, the discontinuous or continuous Integral Sliding Mode (ISM) protocols are respectively developed to achieve accurate finite-time consensus in spite of the disturbances. Simulation results validate the effectiveness of the proposed scheme.

MSC:
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
93B12 Variable structure systems
93C73 Perturbations in control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43, 5, 678-682, (1998) · Zbl 0925.93821
[2] Bhat, S. P.; Bernstein, D. S., Geometric homogeneity with applicationsto finite-time stability, Mathematics Control Signals Systems, 17, 2, 101-127, (2005) · Zbl 1110.34033
[3] Cao, Y., Ren, W., Casbeer, D.W., & Schumacher, C. (2013). Finite-time consensus of networked Lipschitz nonlinear agents under communication constraints. In American control conference, Washington, DC, USA (pp. 1326-1331).
[4] Cao, Y.; Ren, W.; Meng, Z., Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking, Systems & Control Letters, 59, 9, 522-529, (2010) · Zbl 1207.93103
[5] Cao, Y.; Yu, W.; Ren, W.; Chen, G., An overview of recent progress in the study of distributed multi-agent coordination, IEEE Transactions on Industrial Informatics, 9, 1, 427-438, (2013)
[6] Chalanga, A., Kamal, S., & Bandyopadhyay, B. (2013). Continuous integral sliding mode control: a chattering free approach. In IEEE international symposium on industrial electronics, Taipei, TaiWan (pp. 1-6).
[7] Chen, G.; Lewis, F. L.; Xie, L., Finite-time distributed consensus via binary control protocols, Automatica, 47, 9, 1962-1968, (2011) · Zbl 1226.93008
[8] Chen, G.; Yue, Y.; Song, Y., Finite-time cooperative-tracking control for networked Euler-Lagrange systems, IET Control Theory & Applications, 7, 11, 1487-1497, (2013)
[9] Cortes, J., Finite-time convergent gradient flows with applications to network consensus, Automatica, 42, 11, 1993-2000, (2006) · Zbl 1261.93058
[10] Defoort, M.; Floquet, T.; Kokosy, A.; Perruquetti, W., A novel higher order sliding mode control scheme, Systems & Control Letters, 58, 2, 102-108, (2009) · Zbl 1155.93349
[11] Defoort, M.; Nollet, F.; Floquet, T.; Perruqetti, W., A third-order sliding-mode controller for a stepper motor, IEEE Transactions on Industrial Electronics, 56, 9, 3337-3346, (2009)
[12] Do, K. D., Flocking for multiple elliptical agents with limited communication ranges, IEEE Transactions on Robotics, 27, 5, 931-942, (2011)
[13] Du, H.; Li, S.; Lin, X., Finite-time formation control of multiagent systems via dynamic output feedback, International Journal of Robust and Nonlinear Control, 23, 14, 1609-1628, (2013) · Zbl 1286.93010
[14] Du, H.; Li, S.; Qian, C., Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE Transactions on Automatic Control, 56, 11, 2711-2717, (2011) · Zbl 1368.70036
[15] Feng, Y.; Yu, X.; Man, Z., Non-singular terminal sliding mode control ofrigid manipulators, Automatica, 28, 12, 2159-2167, (2002) · Zbl 1015.93006
[16] Franceschelli, M.; Giua, A.; Pisano, A.; Usai, E., Finite-time consensus for switching network topologies with disturbances, Nonlinear Analysis. Hybrid Systems, 10, 1, 83-93, (2013) · Zbl 1291.93009
[17] Ghasemi, M., & Nersesov, S. (2013). Finite-time coordination in multi-agent systems using sliding mode control approach. In Proceedings of the American control conference, Washington, DC, USA (pp. 2053-2058).
[18] Ghommam, J.; Saad, M., Backstepping-based cooperative and adaptive tracking control design for a group of underactuated AUVs in horizontal plan, International Journal of Control, 87, 5, 1076-1093, (2014) · Zbl 1291.93010
[19] Guan, Z.; Sun, F.; Wang, Y.; Li, T., Finite-time consensus for leader-following second-order multi-agent networks, IEEE Transactions on Circuits and Systems. I. Regular Papers, 59, 11, 2646-2654, (2012)
[20] Hartley, E. N.; Trodden, P. A.; Richards, A. G.; Maciejowski, J. M., Model predictive control system design and implementation for spacecraft rendezvous, Control Engineering Practice, 20, 7, 695-713, (2012)
[21] Hong, Y.; Hu, J.; Gao, L., Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 7, 1177-1182, (2006) · Zbl 1117.93300
[22] Hong, Y.; Xu, Y.; Huang, J., Finite-time control for robot manipulators, Systems & Control Letters, 46, 4, 243-253, (2002) · Zbl 0994.93041
[23] Hui, Q., Finite-time rendezvous algorithms for mobile autonomous agents, IEEE Transactions on Automatic Control, 56, 1, 207-211, (2011) · Zbl 1368.93375
[24] Hui, Q.; Haddad, W. M.; Bhat, S. P., Finite-time semistability and consensus for nonlinear dynamical networks, IEEE Transactions on Automatic Control, 53, 8, 1887-1890, (2008) · Zbl 1367.93434
[25] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 48, 6, 988-1001, (2003) · Zbl 1364.93514
[26] Khoo, S.; Xie, L.; Man, Z., Robust finite-time consensus tracking algorithm for multirobot systems, IEEE/ASME Transactions on Mechatronics, 14, 2, 219-228, (2009)
[27] Laghrouche, S.; Plestan, F.; Glumineau, A., Higher order sliding mode control based on integral sliding mode, Automatica, 43, 3, 531-537, (2007) · Zbl 1137.93338
[28] Li, S.; Du, H.; Lin, X., Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47, 8, 1706-1712, (2011) · Zbl 1226.93014
[29] Li, J.; Kumar, K. D., Decentralized fault-tolerant control for satellite attitude synchronization, IEEE Transactions on Fuzzy Systems, 20, 3, 572-586, (2012)
[30] Li, S.; Wang, X., Finite-time consensus and collision avoidance control algorithms for multiple auvs, Automatica, 49, 11, 3359-3367, (2013) · Zbl 1315.93004
[31] Liu, T.; Jiang, Z., Distributed nonlinear control of mobile autonomous multi-agents, Automatica, 50, 4, 1075-1086, (2014) · Zbl 1298.93027
[32] Lu, X.; Lu, R.; Chen, S.; Lu, J., Finite-time distributed tracking control for multi-agent systems with a virtual leader, IEEE Transactions on Circuits and Systems. I. Regular Papers, 60, 2, 352-362, (2013)
[33] Meng, Z.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 12, 2092-2099, (2010) · Zbl 1205.93010
[34] Moreno, J. A.; Osorio, M., Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control, 57, 4, 1035-1040, (2012) · Zbl 1369.93568
[35] Oh, K. K.; Ahn, H. S., Formation control of mobile agents based on distributed position estimation, IEEE Transactions on Automatic Control, 58, 3, 737-742, (2013) · Zbl 1369.93422
[36] Olfati-Saber, R.; Murray, R., Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[37] Ou, M.; Du, H.; Li, S., Finite-time tracking control of multiple nonholonomic mobile robots, Journal of the Franklin Institute, 349, 9, 2834-2860, (2012) · Zbl 1264.93158
[38] Ou, M.; Du, H.; Li, S., Finite-time formation control of multiple nonholonomic mobile robots, International Journal of Robust and Nonlinear Control, 24, 1, 140-165, (2014) · Zbl 1278.93173
[39] Pilloni, A., Pisano, A., Franceschelli, M., & Usai, E. (2013). Finite-time consensus for a network of perturbed double integrators by second-order sliding mode technique. In IEEE conference on decision and control, Florence, Italy(pp. 2145-2150).
[40] Qing, H.; Haddad, W.; Bhat, S. P., Finite-time semistability, Filippov systems, and consensus protocols for nonlinear dynamical networks with switching topologies, Nonlinear Analysis. Hybrid Systems, 4, 3, 557-573, (2010) · Zbl 1205.37102
[41] Ren, W., On consensus algorithms for double-integrator dynamics, IEEE Transactions on Automatic Control, 53, 6, 1503-1509, (2008) · Zbl 1367.93567
[42] Ren, W.; Beard, R. W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Transactions on Automatic Control, 50, 5, 655-661, (2005) · Zbl 1365.93302
[43] Sun, H.; Li, S.; Sun, C., Finite time integral sliding mode control of hypersonic vehicles, Nonlinear Dynamics, 73, 1-2, 229-244, (2013) · Zbl 1281.70016
[44] Sun, F.; Zhu, W., Finite-time consensus for heterogeneous multi-agent systems with mixed-order agents, International Journal of Systems Science, (2013), in press. Published online: 08 Oct 2013
[45] Wang, X., & Hong, Y. (2008). Finite-time consensus for multi-agent networks with second-order agent dynamics. In Proceedings of the 17th world congress, the international federation of automatic control, Seoul, Korea (pp. 15185-15190).
[46] Wang, L.; Xiao, F., Finite-time consensus problems for networks of dynamic agents, IEEE Transactions on Automatic Control, 55, 4, 950-955, (2010) · Zbl 1368.93391
[47] Wu, Y.; Yu, X.; Man, Z., Terminal sliding mode control design for uncertain dynamic systems, Systems & Control Letters, 34, 5, 281-288, (1998) · Zbl 0909.93005
[48] Xargay, E.; Kaminer, I.; Pascoal, A.; Hovakimyan, N., Time-critical cooperative path following of multiple unmanned aerial vehicles over time-varying networks, Journal of Guidance, Control, and Dynamics, 36, 2, 499-516, (2013)
[49] Xiao, F.; Wang, L.; Chen, J.; Gao, Y., Finite-time formation control for multi-agent systems, Automatica, 45, 11, 2605-2611, (2009) · Zbl 1180.93006
[50] Yu, W.; Chen, G.; Cao, M., Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica, 46, 6, 1089-1095, (2010) · Zbl 1192.93019
[51] Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z., Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41, 11, 1957-1964, (2005) · Zbl 1125.93423
[52] Zhang, Y.; Yang, Y., Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances, International Journal of Control, 86, 1, 29-40, (2013) · Zbl 1278.93134
[53] Zhang, Y.; Yang, Y.; Zhao, Y., Finite-time consensus tracking for harmonic oscillators using both state feedback control and output feedback control, International Journal of Robust and Nonlinear Control, 23, 8, 878-893, (2013) · Zbl 1270.93007
[54] Zhao, Y.; Duan, Z.; Wen, G., Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements, International Journal of Robust and Nonlinear Control, (2014), in press. Published online: 17 Mar 2014
[55] Zhao, Y.; Duan, Z.; Wen, G.; Zhang, Y., Distributed finite-time tracking control for multi-agent systems: an observer-based approach, Systems & Control Letters, 62, 1, 22-28, (2013) · Zbl 1257.93011
[56] Zhao, L.; Hua, C., Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM, Nonlinear Dynamics, 75, 1-2, 311-318, (2014) · Zbl 1281.93006
[57] Zoghlami, N., Beji, L., Mlayeh, R., & Abichou, A. (2013). Finite-time consensus and stability of networked nonlinear systems. In 52nd IEEE conference on decision and control, Florence, Italy (pp. 6604-6609).
[58] Zong, Q.; Zhao, Z. S.; Zhang, J., Higher order sliding mode control with self-tuning law based on integral sliding mode, IET Control Theory & Applications, 4, 7, 1282-1289, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.