×

Homomesy in products of two chains. (English) Zbl 1319.05151

Summary: Many invertible actions \(\tau\) on a set \(\mathcal{S}\) of combinatorial objects, along with a natural statistic \(f\) on \(\mathcal{S}\), exhibit the following property which we dub homomesy: the average of \(f\) over each \(\tau\)-orbit in \(\mathcal{S}\) is the same as the average of \(f\) over the whole set \(\mathcal{S}\). This phenomenon was first noticed by D. I. Panyushev [Eur. J. Comb. 30, No. 2, 586–594 (2009; Zbl 1165.06001)] in the context of the rowmotion action on the set of antichains of a root poset; D. Armstrong et al. [Trans. Am. Math. Soc. 365, No. 8, 4121–4151 (2013; Zbl 1271.05011)] proved Panyushev’s conjecture. We describe a theoretical framework for results of this kind that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter’s action on certain subposets of Young’s Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.

MSC:

05E18 Group actions on combinatorial structures
05E10 Combinatorial aspects of representation theory
06A11 Algebraic aspects of posets
PDF BibTeX XML Cite
Full Text: arXiv Link

References:

[1] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2006), no. 949. · Zbl 1191.05095
[2] D. Armstrong, C. Stump and H. Thomas, A uniform bijection between nonnest ing and noncrossing partitions, Trans. Amer. Math. Soc. 365 (2013), no. 8, 4121-4151.arXiv:1101.1277v2 · Zbl 1271.05011
[3] E. Barbier, Generalisation du probleme resolu par M. J. Bertrand, Comptes´ Rendus de l’Academie des Sciences, 105 (1887), 407.
[4] J. Bloom, O. Pechenik, and D. Saracino, Proofs and generalizations of a homo mesy conjecture of Propp and Roby,arXiv:1308.0546v2. · Zbl 1322.05136
[5] A. Brouwer and A. Schrijver, On the period of an operator, defined on antichains, Math. Centrum report ZW 24/74 (1974). · Zbl 0282.06003
[6] P. Cameron and D.G. Fon-Der-Flaass, Orbits of Antichains Revisited, Europ. J. Comb. 16 (1995), 545-554. · Zbl 0831.06001
[7] A. Dvoretzky and T. Motzkin, A problem of arrangements, Duke Math. J. 14 (1947), 305-313. · Zbl 0030.16701
[8] D. Einstein and J. Propp, Combinatorial, piecewise-linear, and birational ho momesy for products of two chains, 2013.arXiv:1310.5294v1
[9] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529. · Zbl 1021.16017
[10] D.G. Fon-Der-Flaass, Orbits of Antichains in Ranked Posets, Europ. J. Comb. 14 (1993), 17-22. the electronic journal of combinatorics 22(3) (2015), #P3.4 28 · Zbl 0777.06002
[11] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A foun dation for computer science, 2nd Ed., Addison-Wesley, 1994. · Zbl 0836.00001
[12] A. Holroyd and J. Propp, Rotor walks and Markov chains, in Algorithmic Prob ability and Combinatorics, American Mathematical Society (2010), 105-126. [H+08]A. Holroyd, L. Levine, K. M´esz´aros, Y. Peres, J. Propp, and D. Wilson, Chip-Firing and Rotor-Routing on Directed Graphs, Progress in Probability, 60 (2008), 331-364. For an updated version see arXiv:0801.3306v4. · Zbl 1173.82339
[13] A. N. Kirillov and A. D. Berenstein, Groups generated by involutions, Gelfand Tsetlin patterns and combinatorics of Young tableaux, Algebra i Analiz 7 (1995), 92-152; English transl., St. Petersburg Math. J. 7 (1996), no. 1, 77-127; also available (as of July 2013) at http://math.uoregon.edu/ arkadiy/bk1.pdf · Zbl 0848.20007
[14] L. Levine and J. Propp, What is a . . . sandpile?, Notices of the AMS 57(8) (2010), 976-979. · Zbl 1203.82061
[15] D.I. Panyushev, On orbits of antichains of positive roots, Europ. J. Comb. 30(2) (2009), 586-594.arXiv:0711.3353v2 · Zbl 1165.06001
[16] J. Propp, The combinatorics of frieze patterns and Markoff numbers, 2005. arXiv:math/0511633v4 · Zbl 1435.05018
[17] V. Reiner, D. Stanton, and D. White, The cyclic sieving phenomenon, J. Com bin. Theory Ser. A 108 (2004), 17-50. · Zbl 1052.05068
[18] V. Reiner, D. Stanton, and D. White, What is. . . cyclic sieving?, Notices of the AMS 61(2) (2014), 169-171. · Zbl 1338.05012
[19] M. Renault, Four Proofs of the Ballot Theorem, Math. Mag. 80 (2007), 345-352. · Zbl 1144.05303
[20] B. Rhoades, Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A 117 (2010), 38-76.arXiv:1005.2568v1 · Zbl 1230.05289
[21] R. Stanley, Enumerative Combinatorics Volume 1, 2nd Ed., no. 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2011.
[22] R. Stanley, Enumerative Combinatorics Volume 2, no. 62 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
[23] R. Stanley, Promotion and Evacuation, Electronic J. Comb. 16(2) (2009), #R9. · Zbl 1169.06002
[24] R. Suter, Young’s Lattice and Dihedral Symmetries, Europ. J. Comb. 23 (2002), 233-238. · Zbl 1001.05120
[25] J. Striker and N. Williams, Promotion and rowmotion, Europ. J. Comb. 33 (2012), 1919-1942. · Zbl 1260.06004
[26] Wikipedia article Bloch group, downloaded August 28, 2014;http://en. wikipedia.org/wiki/Bloch_group; see the section titled “Bloch-Wigner func tion”. the electronic journal of combinatorics 22(3) (2015), #P3.4 29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.