zbMATH — the first resource for mathematics

Bounds for KdV and the 1-d cubic NLS equation in rough function spaces. (English) Zbl 1319.35219
Summary: We consider the cubic nonlinear Schrödinger equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time \(H^s\) bounds in terms of the \(H^s\) size of the initial data for \[ s\geq -\frac14 \] (joint work with D. Tataru [Int. Math. Res. Not. 2007, No. 16, Article ID rnm053, 36 p. (2007; Zbl 1169.35055); Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29, No. 6, 955–988 (2012; Zbl 1280.35137)]), and the solutions to KdV satisfy global a priori estimate in \(H^{-1}\) (joint work with T. Buckmaster [“The Korteweg-de-Vries equation at \(H^{-1}\) regularity”, arXiv:1112.4657]).
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
35B45 A priori estimates in context of PDEs
Full Text: DOI Link
[1] S. A. Akhmanov, R.V. Khokhlov, and A. P. Sukhorukov. Self-focusing and self-trapping of intense light beams in a nonlinear medium. Zh. Eksp. Teor. Fiz., 50:1537-1549, 1966.
[2] T. Buckmaster and H. Koch. The korteweg-de-vries equation at \(h^{-1}\) regularity. arXiv:1112.4657, 2011. · Zbl 1331.35300
[3] Michael Christ, James Colliander, and Terrence Tao. A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. Preprint arXiv:math.AP/0612457. · Zbl 1136.35087
[4] Michael Christ, James Colliander, and Terrence Tao. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math., 125(6):1235-1293, 2003. · Zbl 1048.35101
[5] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. (2), 137(2):295-368, 1993. · Zbl 0771.35042
[6] E. Grenier. Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc., 126(2):523-530, 1998. · Zbl 0910.35115
[7] Zihua Guo. Global well-posedness of Korteweg-de Vries equation in \(H^{-3/4}(\mathbb{R})\). J. Math. Pures Appl. (9), 91(6):583-597, 2009. · Zbl 1173.35110
[8] Shan Jin, C. David Levermore, and David W. McLaughlin. The semiclassical limit of the defocusing NLS hierarchy. Comm. Pure Appl. Math., 52(5):613-654, 1999. · Zbl 0935.35148
[9] S. Kamvissis. Long time behavior for semiclassical NLS. Appl. Math. Lett., 12(8):35-57, 1999. · Zbl 0978.35061
[10] Spyridon Kamvissis, Kenneth D. T.-R. McLaughlin, and Peter D. Miller. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, volume 154 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2003. · Zbl 1057.35063
[11] T. Kappeler and P. Topalov. Global wellposedness of KdV in \(H^{-1}(\mathbb{T},\mathbb{R})\). Duke Math. J., 135(2):327-360, 2006. · Zbl 1106.35081
[12] Thomas Kappeler, Peter Perry, Mikhail Shubin, and Peter Topalov. The Miura map on the line. Int. Math. Res. Not., (50):3091-3133, 2005. · Zbl 1089.35058
[13] Carlos E. Kenig, Gustavo Ponce, and Luis Vega. On the ill-posedness of some canonical dispersive equations. Duke Math. J., 106(3):617-633, 2001. · Zbl 1034.35145
[14] H. Koch and D. Tataru. Energy and local energy bounds for the 1-d cubic NLS equation in \(H^{-1/4}\). arxiv:1012.0148, 2010.
[15] Herbert Koch and Daniel Tataru. A priori bounds for the 1D cubic NLS in negative Sobolev spaces. Int. Math. Res. Not. IMRN, 16:Art. ID rnm053, 36, 2007. · Zbl 1169.35055
[16] Yvan Martel and Frank Merle. Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal., 157(3):219-254, 2001. · Zbl 0981.35073
[17] F. Merle and L. Vega.\( L^2\) stability of solitons for KdV equation. Int. Math. Res. Not., (13):735-753, 2003. · Zbl 1022.35061
[18] Luc Molinet. A note on ill posedness for the KdV equation. Differential Integral Equations, 24(7-8):759-765, 2011. · Zbl 1249.35292
[19] Junkichi Satsuma and Nobuo Yajima. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Progr. Theoret. Phys. Suppl. No. 55, pages 284-306, 1974.
[20] Laurent Thomann. Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Differential Equations, 245(1):249-280, 2008. · Zbl 1157.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.