zbMATH — the first resource for mathematics

Stochastic volatility in mean models with heavy-tailed distributions. (English) Zbl 1319.62205
Summary: A stochastic volatility in mean (SVM) model using the class of symmetric scale mixtures of normal (SMN) distributions is introduced in this article. The SMN distributions form a class of symmetric thick-tailed distributions that includes the normal one as a special case, providing a robust alternative to estimation in SVM models in the absence of normality. A Bayesian method via Markov-chain Monte Carlo (MCMC) techniques is used to estimate parameters. The deviance information criterion (DIC) and the Bayesian predictive information criteria (BPIC) are calculated to compare the fit of distributions. The method is illustrated by analyzing daily stock return data from the São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA). According to both model selection criteria as well as out-of-sample forecasting, we found that the SVM model with slash distribution provides a significant improvement in model fit as well as prediction for the IBOVESPA data over the usual normal model.

62P05 Applications of statistics to actuarial sciences and financial mathematics
62F15 Bayesian inference
91B70 Stochastic models in economics
Full Text: DOI Euclid
[1] Abanto-Valle, C. A., Bandyopadhyay, D., Lachos, V. H. and Enriquez, I. (2010). Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions. Computational Statistics & Data Analysis 54 , 2883-2898. · Zbl 1284.91579
[2] Ando, T. (2006). Bayesian inference for nonlinear and non-Gaussian stochastic volatility model with leverge effect. Journal of Japan Statistical Society 36 , 173-197. · Zbl 1110.62141
[3] Ando, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika 94 , 443-458. · Zbl 1132.62005
[4] Andrews, D. F. and Mallows, S. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society, Ser. B 36 , 99-102. · Zbl 0282.62017
[5] Bekaert, G. and Wu, G. (2000). Asymmetric volatility and risk in equity markets. The Review of Financial Studies 13 , 1-42.
[6] Black, F. (1976). Studies of stock price volatility changes. In Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section 177-181. Alexandria, VA: American Statistical Association.
[7] Brandt, M. W. and Kang, Q. (2004). On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach. Journal of Financial Economics 72 , 217-257.
[8] Campbell, J. Y. and Hentschel, L. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics 31 , 281-318.
[9] Carnero, M. A., Peña, D. and Ruiz, E. (2004). Persistence and kurtosis in GARCH and Stochastic volatility models. Journal of Financial Econometrics 2 , 319-342.
[10] Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician 49 , 327-335.
[11] Chib, S., Nardari, F. and Shepard, N. (2002). Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics 108 , 281-316. · Zbl 1099.62539
[12] Choy, S. T. B. and Chan, J. S. K. (2008). Scale mixtures distributions in statistical modelling. Australian & New Zealand Journal of Statistics 50 , 135-146. · Zbl 1145.62006
[13] de Jong, P. and Shephard, N. (1995). The simulation smoother for time series models. Biometrika 82 , 339-350. · Zbl 0823.62072
[14] Fonseca, T. C. O., Ferreira, M. A. R. and Migon, H. S. (2008). Objective Bayesian analysis for the Student-t regression model. Biometrika 95 , 325-333. · Zbl 1400.62260
[15] French, K. R., Schert, W. G. and Stambugh, R. F. (1987). Expected stock returns and volatility. Journal of Financial Economics 19 , 3-29.
[16] Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 169-193. Oxford, UK: Clarendon Press.
[17] Jacquier, E., Polson, N. and Rossi, P. (2004). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Journal of Econometrics 122 , 185-212. · Zbl 1328.91254
[18] Koopman, S. J. (1993). Disturbance smoothers for state space models. Biometrika 80 , 117-126. · Zbl 0769.62069
[19] Koopman, S. J. and Uspensky, E. H. (2002). The stochastic volatility in mean model: Empirical evidence from international stock markets. Journal of Applied Econometrics 17 , 667-689.
[20] Lachos, V. H., Ghosh, P. and Arellano-Valle, R. B. (2010). Likelihood based inference for skew-normal/independent linear mixed models. Statistica Sinica 20 , 303-322. · Zbl 1186.62071
[21] Liesenfeld, R. and Jung, R. C. (2000). Stochastic volatility models: Conditional normality versus heavy-tailed distributions. Journal of Applied Econometics 15 , 137-160.
[22] Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Applied Statistics 37 , 23-38. · Zbl 0647.62040
[23] Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business 36 , 394-419.
[24] Melino, A. and Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility. Journal of Econometrics 45 , 239-265. · Zbl 1126.91374
[25] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 , 347-370. · Zbl 0722.62069
[26] Pemstein, D., Quinn, K. V. and Martin, A. D. (2011). The Scythe statistical library: An open source C\(++\) library for statistical computation. Journal of Statistical Software 42 , 1-26.
[27] Pitt, M. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filter. Journal of the American Statistical Association 94 , 590-599. · Zbl 1072.62639
[28] Rosa, G. J. M., Padovani, C. R. and Gianola, D. (2003). Robust linear mixed models with Normal/Independent distributions and bayesian MCMC implementation. Biometrical Journal 45 , 573-590.
[29] Salazar, E., Migon, H. S. and Ferreira, M. A. R. (2009). Objective Bayesian analysis for exponential power regression models. Technical report, Federal Univ. Rio de Janeiro, Dept. Statistics. · Zbl 1257.62029
[30] Schwert, G. W. (1989). Why does stock market volatility change over time? The Journal of Finance 44 , 1115-1153.
[31] Shephard, N. and Pitt, M. (1997). Likelihood analysis of non-Gaussian measurements time series. Biometrika 84 , 653-667. · Zbl 0888.62095
[32] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Ser. B 64 , 621-622. · Zbl 1067.62010
[33] Theodossiou, P. and Lee, U. (1995). Relationship between volatility and expected returns across international stock markets. Journal of Business Finance and Accounting 22 , 289-300.
[34] Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics 22 , 1701-1762. · Zbl 0829.62080
[35] Wang, J. and Genton, M. (2006). The multivariate skew-slash distribution. Journal of Statistical Planning and Inference 136 , 209-220. · Zbl 1081.60013
[36] Watanabe, T. and Omori, Y. (2004). A multi-move sampler for estimate non-Gaussian time series model: Comments on Shepard and Pitt (1997). Biometrika 91 , 246-248. · Zbl 1132.62349
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.