×

An efficient variational method for image restoration. (English) Zbl 1319.94017

Summary: Image restoration is one of the most fundamental issues in imaging science. Total variation regularization is widely used in image restoration problems for its capability to preserve edges. In this paper, we consider a constrained minimization problem with double total variation regularization terms. To solve this problem, we employ the split Bregman iteration method and the Chambolle’s algorithm. The convergence property of the algorithm is established. The numerical results demonstrate the effectiveness of the proposed method in terms of peak signal-to-noise ratio (PSNR) and the structure similarity index (SSIM).

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing

Software:

RecPF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banham, M. R.; Kataggelos, A. K., Digital image restoration, IEEE Signal Processing Magazine, 14, 24-41 (1997)
[2] Huang, Y. M.; Ng, M. K.; Wen, Y.-W., A fast total variation minimization method for image restoration, Multiscale Modeling & Simulation, 7, 2, 774-795 (2008) · Zbl 1172.94316 · doi:10.1137/070703533
[3] Nagy, J. G.; Ng, M. K.; Perrone, L., Kronecker product approximations for image restoration with reflexive boundary conditions, SIAM Journal on Matrix Analysis and Applications, 25, 3, 829-841 (2003) · Zbl 1068.65055 · doi:10.1137/S0895479802419580
[4] Huang, J.; Huang, T.-Z.; Zhao, X.-L.; Xu, Z.-B., Image restoration with shifting reflective boundary conditions, Science China Information Sciences, 56, 6, 1-15 (2013) · Zbl 1488.94028 · doi:10.1007/s11432-011-4425-2
[5] Lay, K. T.; Katsaggelos, A. K., Identification and restoration based on the expectationmaximization algorithm, Optical Engineering, 29, 436-445 (1990)
[6] Hansen, P. C.; Nagy, J. G.; O’Leary, D. P., Deblurring Images: Matrices, Spectra, and Filtering, 3 (2006), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 1112.68127 · doi:10.1137/1.9780898718874
[7] Hansen, P. C., Rank-deficient and Discrete Ill-Posed Problems (1998), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 0890.65037 · doi:10.1137/1.9780898719697
[8] Lv, X.-G.; Huang, T.-Z.; Xu, Z.-B.; Zhao, X.-L., Kronecker product approximations for image restoration with whole-sample symmetric boundary conditions, Information Sciences, 186, 150-163 (2012) · Zbl 1239.94011 · doi:10.1016/j.ins.2011.09.026
[9] Tikhonov, A.; Arsenin, V., Solution of Ill-Poised Problems (1977), Washington, DC, USA: Winston, Washington, DC, USA · Zbl 0354.65028
[10] Agarwal, V.; Gribok, A. V.; Abidi, M. A., Image restoration using \(L_1\) norm penalty function, Inverse Problems in Science and Engineering, 15, 8, 785-809 (2007) · Zbl 1258.94013 · doi:10.1080/17415970600971987
[11] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Journal of Physics D, 60, 259-268 (1992) · Zbl 0780.49028
[12] Chan, T.; Esedoglu, S.; Park, F.; Yip, A., Total variation image restoration: overview and recent developments, Handbook of Mathematical Models in Computer Vision, 17-31 (2006), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/0-387-28831-7_2
[13] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639 (1990)
[14] Xiang, Z. J.; Ramadge, P. J., Edge-preserving image regularization based on morphological wavelets and dyadic trees, IEEE Transactions on Image Processing, 21, 4, 1548-1560 (2012) · Zbl 1373.94447 · doi:10.1109/TIP.2011.2181399
[15] Chambolle, A., An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20, 1-2, 89-97 (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[16] Vogel, C. R.; Oman, M. E., Iterative methods for total variation denoising, SIAM Journal on Scientific Computing, 17, 1, 227-238 (1996) · Zbl 0847.65083 · doi:10.1137/0917016
[17] Chan, T. F.; Mulet, P., On the convergence of the lagged diffusivity fixed point method in total variation image restoration, SIAM Journal on Numerical Analysis, 36, 2, 354-367 (1999) · Zbl 0923.65037 · doi:10.1137/S0036142997327075
[18] Chan, T. F.; Golub, G. H.; Mulet, P., A nonlinear primal-dual method for total variation-based image restoration, SIAM Journal on Scientific Computing, 20, 6, 1964-1977 (1999) · Zbl 0929.68118 · doi:10.1137/S1064827596299767
[19] Wang, Y.; Yang, J.; Yin, W.; Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1, 3, 248-272 (2008) · Zbl 1187.68665 · doi:10.1137/080724265
[20] Goldstein, T.; Osher, S., The split Bregman method for \(L 1\)-regularized problems, SIAM Journal on Imaging Sciences, 2, 2, 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[21] Chavent, G.; Kunisch, K., Regularization of linear least squares problems by total bounded variation, ESAIM. Control, Optimisation and Calculus of Variations, 2, 359-376 (1997) · Zbl 0890.49010 · doi:10.1051/cocv:1997113
[22] Hintermüller, M.; Kunisch, K., Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM Journal on Applied Mathematics, 64, 4, 1311-1333 (2004) · Zbl 1055.94504 · doi:10.1137/S0036139903422784
[23] Liu, X.; Huang, L., Split Bregman iteration algorithm for total bounded variation regularization based image deblurring, Journal of Mathematical Analysis and Applications, 372, 2, 486-495 (2010) · Zbl 1202.94062 · doi:10.1016/j.jmaa.2010.07.013
[24] Bregman, L., The relaxation method of finnding the common points of convex sets and its application to the solution of problems in convex optimization, USSR Computational Mathematics and Mathematical Physics, 7, 200-217 (1967)
[25] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, SIAM Multiscale Modeling and Simulation, 4, 2, 460-489 (2005) · Zbl 1090.94003 · doi:10.1137/040605412
[26] Yin, W. T.; Osher, S.; Goldfarb, D.; Darbon, J., Bregman iterative algorithms for \(l_1\)-minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1, 1, 143-168 (2008) · Zbl 1203.90153 · doi:10.1137/070703983
[27] Cai, J.-F.; Osher, S.; Shen, Z., Split Bregman methods and frame based image restoration, SIAM Multiscale Modeling and Simulation, 8, 2, 337-369 (2009) · Zbl 1189.94014 · doi:10.1137/090753504
[28] Li, W. H.; Li, Q. L.; Gong, W.; Tang, S., Total variation blind deconvolution employing split Bregman iteration, Journal of Visual Communication and Image Representation, 23, 409-417 (2012)
[29] Zhu, M.; Chan, T. F., An efficient primal-dual hybrid gradient algorithm for total variation image restoration, CAM Report, 08-34 (2008), Mathematics Department, UCLA
[30] Ng, M. K.; Qi, L.; Yang, Y.-F.; Huang, Y.-M., On semismooth Newton’s methods for total variation minimization, Journal of Mathematical Imaging and Vision, 27, 3, 265-276 (2007) · doi:10.1007/s10851-007-0650-0
[31] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20, 1, 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[32] Combettes, P. L.; Wajs, V. R., Signal recovery by proximal forward-backward splitting, SIAM Multiscale Modeling & Simulation, 4, 4, 1168-1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[33] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 4, 600-612 (2004)
[34] Horé, A.; Ziou, D., Image quality metrics: PSNR vs. SSIM, Proceedings of the IEEE International Conference on Pattern Recognition
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.