×

A new adaptive LSSVR with online multikernel RBF tuning to evaluate analog circuit performance. (English) Zbl 1319.94118

Summary: Focusing on the analog circuit performance evaluation demand of fast time responding online, a novel evaluation strategy based on adaptive Least Squares Support Vector Regression (LSSVR) which employs multikernel RBF is proposed in this paper. The superiority of the multi-kernel RBF has more flexibility to the kernel function online such as the bandwidths tuning. And then the decision parameters of the kernel parameters determine the input signal to map to the feature space deduced that a well plant model by discarding redundant features. Experiment adopted the typical circuit Sallen-Key low pass filter to prove the proposed evaluation strategy via the eight performance indexes. Simulation results reveal that the testing speed together with the evaluation performance, especially the testing speed of the proposed, is superior to that of the traditional LSSVR and \(\varepsilon\)-SVR, which is suitable for promotion online.

MSC:

94C05 Analytic circuit theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kabisatpathy, P.; Barua, A.; Sinha, S., Fault Diagnosis of Analog Integrated Circuits, 30 (2005), Springer
[2] Koza, J. R.; Bennett, F. H.; Andre, D.; Keane, M. A.; Dunlap, F., Automated synthesis of analog electrical circuits by means of genetic programming, IEEE Transactions on Evolutionary Computation, 1, 2, 109-128 (1997) · doi:10.1109/4235.687879
[3] Yin, S.; Ding, S. X.; Sari, A. H. A.; Hao, H., Data-driven monitoring for stochastic systems and its application on batch process, International Journal of Systems Science, 44, 7, 1366-1376 (2013) · Zbl 1278.93259 · doi:10.1080/00207721.2012.659708
[4] Yin, S.; Ding, S.; Haghani, A.; Hao, H.; Zhang, P., A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, Journal of Process Control, 22, 9, 1567-1581 (2012) · doi:10.1016/j.jprocont.2012.06.009
[5] Yin, S.; Yang, X.; Karimi, H. R., Data-driven adaptive observer for fault diagnosis, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.93115 · doi:10.1155/2012/832836
[6] Yin, S.; Luo, H.; Ding, S., Real-time implementation of fault-tolerant control systems with performance optimization, IEEE Transactions on Industrial Electronics, 61, 5, 2402-2411 (2013) · doi:10.1109/TIE.2013.2273477
[7] Lin, H.; Zhang, L.; Ren, D.; Kang, H.; Gu, G., Fault diagnosis in nonlinear analog circuit based on Wiener kernel and BP neural network, Chinese Journal of Scientific Instrument, 30, 9, 1946-1949 (2009)
[8] Sánchez, D.; Melin, P.; Castillo, O.; Valdez, F., Modular neural networks optimization with hierarchical genetic algorithms with fuzzy response integration for pattern recognition, Advances in Computational Intelligence, 247-258 (2013), Springer · doi:10.1007/978-3-642-37798-3_22
[9] Abdulla, S.; Tokhi, M., Fuzzy logic based FES driven cycling by stimulating single muscle group, Converging Clinical and Engineering Research on Neurorehabilitation, 173-182 (2013), Springer · doi:10.1007/978-3-642-34546-3_28
[10] Chen, C. W.; Chen, P. C.; Chiang, W. L., Modified intelligent genetic algorithm-based adaptive neural network control for uncertain structural systems, Journal of Vibration and Control, 19, 9, 1333-1347 (2013) · doi:10.1177/1077546312442232
[11] Aihua, Z.; Zhongdang, Y., Research on amplifier performance evaluation based on support vector regression machine, Chinese Journal of Scientific Instrument, 29, 3, 618-622 (2008)
[12] Smola, A. J.; Schölkopf, B., A tutorial on support vector regression, Statistics and Computing, 14, 3, 199-222 (2004) · doi:10.1023/B:STCO.0000035301.49549.88
[13] Shevade, S. K.; Keerthi, S. S.; Bhattacharyya, C.; Murthy, K. R. K., Improvements to the SMO algorithm for SVM regression, IEEE Transactions on Neural Networks, 11, 5, 1188-1193 (2000) · doi:10.1109/72.870050
[14] Suykens, J. A. K.; Vandewalle, J., Least squares support vector machine classifiers, Neural Processing Letters, 9, 3, 293-300 (1999)
[15] Suykens, J. A. K.; De Brabanter, J.; Lukas, L.; Vandewalle, J., Weighted least squares support vector machines: robustness and sparce approximation, Neurocomputing, 48, 1, 85-105 (2002) · Zbl 1006.68799 · doi:10.1016/S0925-2312(01)00644-0
[16] Wang, L.; Bo, L. F.; Liu, F.; Jiao, L. C., Least squares hidden space support vector machines, Chinese Journal of Computers, 28, 8, 1302-1307 (2005)
[17] Wang, Z.; Chen, S., New least squares support vector machines based on matrix patterns, Neural Processing Letters, 26, 1, 41-56 (2007) · doi:10.1007/s11063-007-9041-1
[18] Zhao, Y.; Sun, J., Recursive reduced least squares support vector regression, Pattern Recognition, 42, 5, 837-842 (2009) · Zbl 1162.68645 · doi:10.1016/j.patcog.2008.09.028
[19] Campbell, W. M.; Sturim, D. E.; Reynolds, D. A., Support vector machines using GMM supervectors for speaker verification, IEEE Signal Processing Letters, 13, 5, 308-311 (2006) · doi:10.1109/LSP.2006.870086
[20] Guo, Y. C., An integrated PSO for parameter determination and feature selection of SVR and its application in STLF, Proceedings of the International Conference on Machine Learning and Cybernetics, IEEE · doi:10.1109/ICMLC.2009.5212569
[21] Momma, M.; Bennett, K. P., A pattern search method for model selection of support vector regression, Proceedings of the SIAM Conference on Data Mining (SDM ’02)
[22] Uçak, K.; Öke, G., Adaptive PID controller based on online LSSVR with kernel tuning, Proceedings of the International Symposium on INnovations in Intelligent SysTems and Applications (INISTA ’11), IEEE · doi:10.1109/INISTA.2011.5946117
[23] Ucak, K.; Oke, G., An improved adaptive PID controller based on online LSSVR with multi RBF kernel tuning, Adaptive and Intelligent Systems, 40-51 (2011), Springer · doi:10.1007/978-3-642-23857-4_8
[24] Vapnik, V. N., The Nature of Statistical Learning Theory (2000), New York, NY, USA: Springer, New York, NY, USA · Zbl 0934.62009
[25] Gunn, S. R., Support vector machines for classification and regression, ISIS Technical Report (1998)
[26] Rajasekaran, S.; Gayathri, S.; Lee, T. L., Support vector regression methodology for storm surge predictions, Ocean Engineering, 35, 16, 1578-1587 (2008) · doi:10.1016/j.oceaneng.2008.08.004
[27] Liang, Z.; Li, Y., Incremental support vector machine learning in the primal and applications, Neurocomputing, 72, 10-12, 2249-2258 (2009) · doi:10.1016/j.neucom.2009.01.001
[28] Cauwenberghs, G.; Poggio, T., Incremental and decremental support vector machine learning, Advances in Neural Information Processing Systems, 409-415 (2001)
[29] Luenberger, D. G., Linear and Nonlinear Programming (2003), Boston, Mass, USA: Kluwer Academic Publishers, Boston, Mass, USA · Zbl 1134.90040
[30] Aminian, M.; Aminian, F., Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor, IEEE Transactions on Circuits and Systems II, 47, 2, 151-156 (2000) · doi:10.1109/82.823545
[31] Cherkassky, V.; Mulier, F., Learning from Data: Concepts, Theory, and Methods (2007), Wiley · Zbl 1130.62002 · doi:10.1002/9780470140529
[32] Cherkassky, V.; Ma, Y., Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks, 17, 1, 113-126 (2004) · Zbl 1075.68632 · doi:10.1016/S0893-6080(03)00169-2
[33] Yu, P. S.; Chen, S. T.; Chang, I. F., Support vector regression for real-time flood stage forecasting, Journal of Hydrology, 328, 3-4, 704-716 (2006) · doi:10.1016/j.jhydrol.2006.01.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.