Mak, Kit-Ho; Zaharescu, Alexandru Poisson type phenomena for points on hyperelliptic curves modulo \(p\). (English) Zbl 1320.11056 Funct. Approximatio, Comment. Math. 47, No. 1, 65-78 (2012). Summary: Let \(p\) be a large prime, and let \(C\) be a hyperelliptic curve over \(\mathbb{F}_p\). We study the distribution of the \(x\)-coordinates in short intervals when the \(y\)-coordinates lie in a prescribed interval, and the distribution of the distance between consecutive \(x\)-coordinates with the same property. Next, let \(g(P,P_0)\) be a rational function of two points on \(C\). We study the distribution of the above distances with an extra condition that \(g(P_i,P_{i+1})\) lies in a prescribed interval, for any consecutive points \(P_i,P_{i+1}\). Cited in 2 Documents MSC: 11G20 Curves over finite and local fields 11T99 Finite fields and commutative rings (number-theoretic aspects) 14G15 Finite ground fields in algebraic geometry Keywords:Poisson distribution; hyperelliptic curves × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Y. Aubry and M. Perret, A Weil theorem for singular curves , Arithmetic, geometry and coding theory (Luminy, 1993), de Gruyter, Berlin, 1996, pp. 1-7. · Zbl 0873.11037 · doi:10.1515/9783110811056.1 [2] E. Bombieri, On exponential sums in finite fields , Amer. J. Math. 88 (1966), no. 1, 71-105. · Zbl 0171.41504 · doi:10.2307/2373048 [3] C. Cobeli and A. Zaharescu, On the distribution of primitive roots mod \(p\) , Acta Arith. 83 (1998), no. 2, 143-153. · Zbl 0892.11003 [4] —-, On the distribution of the \({\mathbf F}_p\) -points on an affine curve in \(r\) dimensions, Acta Arith. 99 (2001), no. 4, 321-329. · Zbl 1025.11021 · doi:10.4064/aa99-4-2 [5] H. Davenport, On a principle of Lipschitz , J. London Math. Soc. 26 (1951), 179-183. · Zbl 0042.27504 · doi:10.1112/jlms/s1-26.3.179 [6] M. Fujiwara, Distribution of rational points on varieties over finite fields , Mathematika 35 (1988), no. 2, 155-171. · Zbl 0669.10046 · doi:10.1112/S0025579300015151 [7] A. Granville, I. E. Shparlinski, and A. Zaharescu, On the distribution of rational functions along a curve over \(\mathbb F_p\) and residue races, J. Number Theory 112 (2005), no. 2, 216-237. · Zbl 1068.11043 · doi:10.1016/j.jnt.2005.02.002 [8] K.-H. Mak and A. Zaharescu, The distribution of values of short hybrid exponential sums on curves over finite fields , Math. Res. Lett. 18 (2011), no. 1, 155-174. · Zbl 1331.11110 [9] G. Myerson, The distribution of rational points on varieties defined over a finite field , Mathematika 28 (1981), no. 2, 153-159 (1982). · Zbl 0469.10002 · doi:10.1112/S0025579300010202 [10] J. H. Silverman, The arithmetic of elliptic curves , 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. · Zbl 1194.11005 [11] M. Vajaitu and A. Zaharescu, Distribution of values of rational maps on the \({\mathbf F}_p\) -points on an affine curve, Monatsh. Math. 136 (2002), no. 1, 81-86. · Zbl 1029.11022 · doi:10.1007/s006050200035 [12] A. Zaharescu, The distribution of the values of a rational function modulo a big prime , J. Théor. Nombres Bordeaux 15 (2003). · Zbl 1093.11062 · doi:10.5802/jtnb.431 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.