×

Vector norm inequalities for power series of operators in Hilbert spaces. (English) Zbl 1320.47013

Vector norm inequalities for power series of operators in Hilbert spaces are highlighted. The authors deal with vector norm inequalities that provide upper bounds for the Lipschitz quantity \(\|f(T)x-f(V)x\|\) for power series \(f(z)= \sum^{\infty}_{n = 0} a_{n}z^{n}\), bounded linear operators \(T, V\) on the Hilbert space \(H\), and vectors \(x\in H \).
Earlier works on Hermite-Hadamard type inequalities are discussed. Appropriate applications and examples for elementary functions of interest are mentioned.

MSC:

47A63 Linear operator inequalities
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] [1] H. Araki and S. Yamagami, An inequality for Hilbert-Schmidt norm, Commun. Math. Phys. 81 (1981), 89-96. · Zbl 0468.47013
[2] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl. 208/209 (1994), 367-376. · Zbl 0815.47006
[3] R. Bhatia, Perturbation bounds for the operator absolute value. Linear Algebra Appl. 226/228 (1995), 639-645. · Zbl 0835.47009
[4] R. Bhatia, D. Singh and K. B. Sinha, Differentiation of operator functions and perturbation bounds. Comm. Math. Phys. 191 (1998), no. 3, 603-611. · Zbl 0918.47017
[5] R. Bhatia, Matrix Analysis, Springer Verlag, 1997. · Zbl 0863.15001
[6] L. Ciurdariu, A note concerning several Hermite-Hadamard inequalities for different types of convex functions. Int. J. Math. Anal. 6 (2012), no. 33-36, 1623-1639. · Zbl 1253.26037
[7] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245 (2000), no. 2, 489-501. · Zbl 0956.26015
[8] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite- Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite hadamard.html].
[9] S. S. Dragomir, Inequalities of Lipschitz type for power series of operators in Hilbert spaces, Commun. Math. Anal. 16 (2014), Number 1, 102 - 122.
[10] R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972. · Zbl 0247.47001
[11] Yu. B. Farforovskaya, Estimates of the closeness of spectral decompositions of self-adjoint op- erators in the Kantorovich-Rubinshtein metric (in Russian), Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom. 4 (1967), 155-156.
[12] Yu. B. Farforovskaya, An estimate of the norm ||f (B) - f (A)|| for self-adjoint operators A and B (in Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. 56 (1976), 143-162 .
[13] Yu. B. Farforovskaya and L. Nikolskaya, Modulus of continuity of operator functions. Algebra i Analiz 20 (2008), no. 3, 224-242; translation in St. Petersburg Math. J. 20 (2009), no. 3, 493-506. · Zbl 1207.47016
[14] Y. Feng and W. Zhao, Renement of Hermite-Hadamard inequality. Far East J. Math. Sci. 68 (2012), no. 2, 245-250. · Zbl 1253.26038
[15] X. Gao, A note on the Hermite-Hadamard inequality. J. Math. Inequal. 4 (2010), no. 4, 587- 591. · Zbl 1208.26033
[16] S.-R. Hwang, K.-L. Tseng and K.-C. Hsu, Hermite-Hadamard type and Fejer type inequalities for general weights (I). J. Inequal. Appl. 2013, 2013:170.
[17] T. Kato, Continuity of the map S ! jSj for linear operators, Proc. Japan Acad. 49 (1973), 143-162.
[18] U. S. Krmac and R. Dikici, On some Hermite-Hadamard type inequalities for twice differen- tiable mappings and applications. Tamkang J. Math. 44 (2013), no. 1, 41-51.
[19] J. Mikusinski, The Bochner Integral, Birkhauser Verlag, 1978. · Zbl 0369.28010
[20] M. Muddassar, M. I. Bhatti and M. Iqbal, Some new s-Hermite-Hadamard type inequalities for differentiable functions and their applications. Proc. Pakistan Acad. Sci. 49 (2012), no. 1, 9-17.
[21] M. Matic and J. Pecaric, Note on inequalities of Hadamard’s type for Lipschitzian mappings. Tamkang J. Math. 32 (2001), no. 2, 127-130. · Zbl 0993.26019
[22] W. Rudin, Functional Analysis, McGraw Hill, 1973.
[23] M. Z. Sarikaya, On new Hermite Hadamard Fejer type integral inequalities. Stud. Univ. Babes- Bolyai Math. 57 (2012), no. 3, 377-386. · Zbl 1289.26054
[24] S. Wasowicz and A. Witkowski, On some inequality of Hermite-Hadamard type. Opuscula Math. 32 (2012), no. 3, 591-600. · Zbl 1246.26021
[25] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, Art. ID 980438, 14 pp. · Zbl 1247.26041
[26] G. Zabandan, A. Bodaghi and A. Klcman, The Hermite-Hadamard inequality for r-convex functions. J. Inequal. Appl. 2012, 2012:215, 8 pp. · Zbl 1279.26062
[27] C.-J. Zhao, W.-S. Cheung and X.-Y. Li, On the Hermite-Hadamard type inequalities. J. Inequal. Appl. 2013, 2013:228. · Zbl 1282.26043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.