Pang, Chin-Tzong; Naraghirad, Eskandar Bregman asymptotic pointwise nonexpansive mappings in Banach spaces. (English) Zbl 1320.47052 Abstr. Appl. Anal. 2013, Article ID 316813, 14 p. (2013). The authors study the approximation of fixed points of a new class of Bregman asymptotic pointwise nonexpansive mappings. Also, they prove weak convergence theorems for generalized Mann and Ishikawa iteration processes for Bregman asymptotic pointwise nonexpansive mappings in reflexive Banach spaces. Reviewer: Shahram Saeidi (Sanandaj) Cited in 1 Document MSC: 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. 47J25 Iterative procedures involving nonlinear operators × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Takahashi, W., Nonlinear Functional Analysis, Fixed Point Theory and Its Applications (2000), Yokohama, Japan: Yokohama Publishers, Yokohama, Japan · Zbl 0997.47002 [2] Takahashi, W., Convex Analysis and Approximation of Fixed Points (2000), Yokohama, Japan: Yokohama Publishers, Yokohama, Japan · Zbl 1089.49500 [3] Mann, W. R., Mean value methods in iteration, Proceedings of the American Mathematical Society, 4, 506-510 (1953) · Zbl 0050.11603 · doi:10.1090/S0002-9939-1953-0054846-3 [4] Ishikawa, S., Fixed points by a new iteration method, Proceedings of the American Mathematical Society, 44, 147-150 (1974) · Zbl 0286.47036 · doi:10.1090/S0002-9939-1974-0336469-5 [5] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, 67, 2, 274-276 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6 [6] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bulletin of the American Mathematical Society, 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0 [7] Gossez, J.-P.; Lami Dozo, E., Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific Journal of Mathematics, 40, 565-573 (1972) · Zbl 0223.47025 · doi:10.2140/pjm.1972.40.565 [8] Alber, Y. I.; Kartsatos, A., Metric and generalized projection operators in Banach spaces: properties and applications, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 15-50 (1996), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0883.47083 [9] Butnariu, D.; Iusem, A. N., Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization (2000), Dordrecht, Germany: Kluwer Academic, Dordrecht, Germany · Zbl 0960.90092 · doi:10.1007/978-94-011-4066-9 [10] Kohsaka, F.; Takahashi, W., Proximal point algorithms with Bregman functions in Banach spaces, Journal of Nonlinear and Convex Analysis, 6, 3, 505-523 (2005) · Zbl 1105.47059 [11] Rockafellar, R. T., Characterization of the subdifferentials of convex functions, Pacific Journal of Mathematics, 17, 497-510 (1966) · Zbl 0145.15901 · doi:10.2140/pjm.1966.17.497 [12] Rockafellar, R. T., On the maximal monotonicity of subdifferential mappings, Pacific Journal of Mathematics, 33, 209-216 (1970) · Zbl 0199.47101 · doi:10.2140/pjm.1970.33.209 [13] Brègman, L. M., The relation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics, 7, 200-217 (1967) [14] Censor, Y.; Lent, A., An iterative row-action method for interval convex programming, Journal of Optimization Theory and Applications, 34, 3, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676 [15] Naraghirad, E.; Takahashi, W.; Yao, J.-C., Generalized retraction and fixed point theorems using Bregman functions in Banach spaces, Journal of Nonlinear and Convex Analysis, 13, 1, 141-156 (2012) · Zbl 1252.47057 [16] Zălinescu, C., Convex Analysis in General Vector Spaces (2002), River Edge, NJ, USA: World Scientific Publishing, River Edge, NJ, USA · Zbl 1023.46003 · doi:10.1142/9789812777096 [17] Kirk, W. A.; Xu, H.-K., Asymptotic pointwise contractions, Nonlinear Analysis: Theory, Methods & Applications, 69, 12, 4706-4712 (2008) · Zbl 1172.47038 · doi:10.1016/j.na.2007.11.023 [18] Kozlowski, W. M., Fixed point iteration processes for asymptotic pointwise nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, 377, 1, 43-52 (2011) · Zbl 1210.47096 · doi:10.1016/j.jmaa.2010.10.026 [19] Hussain, N.; Khamsi, M. A., On asymptotic pointwise contractions in metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 71, 10, 4423-4429 (2009) · Zbl 1176.54031 · doi:10.1016/j.na.2009.02.126 [20] Khamsi, M. A.; Kozlowski, W. M., On asymptotic pointwise contractions in modular function spaces, Nonlinear Analysis: Theory, Methods & Applications, 73, 9, 2957-2967 (2010) · Zbl 1229.47079 · doi:10.1016/j.na.2010.06.061 [21] Hussain, N.; Naraghirad, E.; Alotaibi, A., Existence of common fixed points using Bregman nonexpansive retracts and Bregman functions in Banach spaces, Fixed Point Theory and Applications, 2013, article 113 (2013) · Zbl 1423.47025 · doi:10.1186/1687-1812-2013-113 [22] Chen, G.; Teboulle, M., Convergence analysis of a proximal-like minimization algorithm using Bregman functions, SIAM Journal on Optimization, 3, 3, 538-543 (1993) · Zbl 0808.90103 · doi:10.1137/0803026 [23] Naraghirad, E.; Yao, J.-C., Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, 2013, article 141 (2013) · Zbl 1423.47046 · doi:10.1186/1687-1812-2013-141 [24] Butnariu, D.; Resmerita, E., Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstract and Applied Analysis, 2006 (2006) · Zbl 1130.47046 · doi:10.1155/AAA/2006/84919 [25] Bruck, R.; Kuczumow, T.; Reich, S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloquium Mathematicum, 65, 2, 169-179 (1993) · Zbl 0849.47030 [26] - Huang, Y.; Jeng, J.-C.; Kuo, T.-Y.; Hong, C.-C., Fixed point and weak convergence theorems for point-dependent \(λ\)-hybrid mappings in Banach spaces, Fixed Point Theory and Applications, 2011, article 105 (2011) · Zbl 1311.47069 · doi:10.1186/1687-1812-2011-105 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.