×

Subordination for the sum of two random matrices. (English) Zbl 1320.60022

Summary: This paper is about the relation of random matrix theory and the subordination phenomenon in complex analysis. We find that the resolvent of the sum of two random matrices is approximately subordinated to the resolvents of the original matrices. We estimate the error terms in this relation and in the subordination relation for the traces of the resolvents. This allows us to prove a local limit law for eigenvalues and a delocalization result for eigenvectors of the sum of two random matrices. In addition, we use subordination to determine the limit of the largest eigenvalue for the rank-one deformations of unitary-invariant random matrices.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118 . Cambridge Univ. Press, Cambridge. · Zbl 1184.15023
[2] Bai, Z. and Yao, J.-f. (2008). Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat. 44 447-474. · Zbl 1274.62129
[3] Baik, J., Ben Arous, G. and Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 1643-1697. · Zbl 1086.15022
[4] Baik, J. and Silverstein, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 1382-1408. · Zbl 1220.15011
[5] Belinschi, S. T. (2008). The Lebesgue decomposition of the free additive convolution of two probability distributions. Probab. Theory Related Fields 142 125-150. · Zbl 1390.46059
[6] Belinschi, S. T. and Bercovici, H. (2007). A new approach to subordination results in free probability. J. Anal. Math. 101 357-365. · Zbl 1142.46030
[7] Belinschi, S. T., Bercovici, H., Capitaine, M. and Février, M. (2012). Outliers in the spectrum of large deformed unitarily invariant models. Available at . arXiv:1207.5443 · Zbl 1412.60014
[8] Benaych-Georges, F., Guionnet, A. and Maida, M. (2011). Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Probab. 16 1621-1662. · Zbl 1245.60007
[9] Benaych-Georges, F., Guionnet, A. and Maida, M. (2012). Large deviations of the extreme eigenvalues of random deformations of matrices. Probab. Theory Related Fields 154 703-751. · Zbl 1261.15042
[10] Benaych-Georges, F. and Nadakuditi, R. R. (2011). The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227 494-521. · Zbl 1226.15023
[11] Benaych-Georges, F. and Nadakuditi, R. R. (2012). The singular values and vectors of low rank perturbations of large rectangular random matrices. J. Multivariate Anal. 111 120-135. · Zbl 1252.15039
[12] Biane, P. (1998). Processes with free increments. Math. Z. 227 143-174. · Zbl 0902.60060
[13] Bloemendal, A. and Virág, B. (2011). Limits of spiked random matrices II. Available at . arXiv:1109.3704 · Zbl 1356.60014
[14] Bloemendal, A. and Virág, B. (2013). Limits of spiked random matrices I. Probab. Theory Related Fields 156 795-825. · Zbl 1356.60014
[15] Capitaine, M. (2013). Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices. J. Theoret. Probab. 26 595-648. · Zbl 1279.15026
[16] Capitaine, M. and Donati-Martin, C. (2007). Strong asymptotic freeness for Wigner and Wishart matrices. Indiana Univ. Math. J. 56 767-803. · Zbl 1162.15013
[17] Capitaine, M., Donati-Martin, C. and Féral, D. (2009). The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. Ann. Probab. 37 1-47. · Zbl 1163.15026
[18] Capitaine, M., Donati-Martin, C., Féral, D. and Février, M. (2011). Free convolution with a semicircular distribution and eigenvalues of spiked deformations of Wigner matrices. Electron. J. Probab. 16 1750-1792. · Zbl 1245.15037
[19] Chistyakov, G. P. and Götze, F. (2011). The arithmetic of distributions in free probability theory. Cent. Eur. J. Math. 9 997-1050. · Zbl 1239.46046
[20] Erdős, L. (2011). Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 67-198. · Zbl 1230.82032
[21] Erdős, L. and Knowles, A. (2011). Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 509-554. · Zbl 1226.15024
[22] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2013). The local semicircle law for a general class of random matrices. Electron. J. Probab. 18 no. 59, 58. · Zbl 1373.15053
[23] Erdős, L., Schlein, B. and Yau, H.-T. (2009). Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37 815-852. · Zbl 1175.15028
[24] Féral, D. and Péché, S. (2007). The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys. 272 185-228. · Zbl 1136.82016
[25] Haagerup, U. and Thorbjørnsen, S. (2005). A new application of random matrices. Ann. of Math. (2) 162 711-775. · Zbl 1103.46032
[26] Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis . Cambridge Univ. Press, Cambridge. · Zbl 0576.15001
[27] Kantorovič, L. V. (1948). Functional analysis and applied mathematics. Uspehi Matem. Nauk ( N.S. ) 3 89-185. · Zbl 0034.21203
[28] Kargin, V. (2012). A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields 154 677-702. · Zbl 1260.60015
[29] Kargin, V. (2013). An inequality for the distance between densities of free convolutions. Ann. Probab. 41 3241-3260. · Zbl 1284.46055
[30] Knowles, A. and Yin, J. (2014). The outliers of a deformed Wigner matrix. Ann. Probab. 42 1980-2031. · Zbl 1306.15034
[31] Knowles, A. and Yin, J. (2013). The isotropic semicircle law and deformation of Wigner matrices. Comm. Pure Appl. Math. 66 1663-1750. · Zbl 1290.60004
[32] Maïda, M. (2007). Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles. Electron. J. Probab. 12 1131-1150 (electronic). · Zbl 1127.60022
[33] Male, C. (2012). The norm of polynomials in large random and deterministic matrices. Probab. Theory Related Fields 154 477-532. With an appendix by Dimitri Shlyakhtenko. · Zbl 1269.15039
[34] Nica, A. and Speicher, R. (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335 . Cambridge Univ. Press, Cambridge. · Zbl 1133.60003
[35] Pastur, L. and Vasilchuk, V. (2000). On the law of addition of random matrices. Comm. Math. Phys. 214 249-286. · Zbl 1039.82020
[36] Péché, S. (2006). The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134 127-173. · Zbl 1088.15025
[37] Peng, M. (2012). Eigenvalues of deformed random matrices. Available at . arXiv:1205.0572
[38] Pizzo, A., Renfrew, D. and Soshnikov, A. (2013). On finite rank deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 49 64-94. · Zbl 1278.60014
[39] Renfrew, D. and Soshnikov, A. (2013). On finite rank deformations of Wigner matrices II: Delocalized perturbations. Random Matrices Theory Appl. 2 1250015, 36. · Zbl 1296.60008
[40] Shiryaev, A. N. (1996). Probability , 2nd ed. Graduate Texts in Mathematics 95 . Springer, New York. · Zbl 0909.01009
[41] Speicher, R. (1993). Free convolution and the random sum of matrices. Publ. Res. Inst. Math. Sci. 29 731-744. · Zbl 0795.46048
[42] Tillmann, H.-G. (1953). Randverteilungen analytischer Funktionen und Distributionen. Math. Z. 59 61-83. · Zbl 0051.08901
[43] Voiculescu, D. (1991). Limit laws for random matrices and free products. Invent. Math. 104 201-220. · Zbl 0736.60007
[44] Voiculescu, D. (1993). The analogues of entropy and of Fisher’s information measure in free probability theory. I. Comm. Math. Phys. 155 71-92. · Zbl 0781.60006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.