Branching random tessellations with interaction: a thermodynamic view. (English) Zbl 1320.60035

Summary: A branching random tessellation (BRT) is a stochastic process that transforms a coarse initial tessellation of \(\mathbb{R}^{d}\) into a finer tessellation by means of random cell divisions in continuous time. This concept generalises the so-called STIT tessellations, for which all cells split up independently of each other. Here, we allow the cells to interact, in that the division rule for each cell may depend on the structure of the surrounding tessellation. Moreover, we consider coloured tessellations, for which each cell is marked with an internal property, called its colour. Under a suitable condition, the cell interaction of a BRT can be specified by a measure kernel, the so-called division kernel, that determines the division rules of all cells and gives rise to a Gibbsian characterisation of BRTs. For translation invariant BRTs, we introduce an “inner” entropy density relative to a STIT tessellation. Together with an inner energy density for a given “moderate” division kernel, this leads to a variational principle for BRTs with this prescribed kernel, and further to an existence result for such BRTs.


60D05 Geometric probability and stochastic geometry
60K35 Interacting random processes; statistical mechanics type models; percolation theory
28D20 Entropy and other invariants
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
Full Text: DOI arXiv Euclid


[1] Arak, T. and Surgailis, D. (1989). Markov fields with polygonal realizations. Probab. Theory Related Fields 80 543-579. · Zbl 0638.60091
[2] Arak, T. and Surgailis, D. (1991). Consistent polygonal fields. Probab. Theory Related Fields 89 319-346. · Zbl 0725.60044
[3] Bertin, E., Billiot, J.-M. and Drouilhet, R. (1999). Existence of Delaunay pairwise Gibbs point process with superstable component. J. Stat. Phys. 95 719-744. · Zbl 0933.60048
[4] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes . Cambridge Univ. Press, Cambridge. · Zbl 1107.60002
[5] Cattiaux, P., Roelly, S. and Zessin, H. (1996). Une approche gibbsienne des diffusions browniennes infini-dimensionnelles. Probab. Theory Related Fields 104 147-179. · Zbl 0838.60068
[6] Dai Pra, P. (1993). Large deviations and stationary measures for interacting particle systems. Stochastic Process. Appl. 48 9-30. · Zbl 0789.60020
[7] Dai Pra, P., Roelly, S. and Zessin, H. (2002). A Gibbs variational principle in space-time for infinite-dimensional diffusions. Probab. Theory Related Fields 122 289-315. · Zbl 0998.60092
[8] Dereudre, D., Drouilhet, R. and Georgii, H.-O. (2012). Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Related Fields 153 643-670. · Zbl 1256.60036
[9] Dereudre, D. and Georgii, H.-O. (2009). Variational characterisation of Gibbs measures with Delaunay triangle interaction. Electron. J. Probab. 14 2438-2462. · Zbl 1190.60091
[10] Deuschel, J.-D. (1986). Nonlinear smoothing of infinite-dimensional diffusion processes. Stochastics 19 237-261. · Zbl 0608.60044
[11] Feller, W. (1940). On the integro-differential equations of purely discontinuous Markoff processes. Trans. Amer. Math. Soc. 48 488-515. · Zbl 0025.34704
[12] Föllmer, H. and Snell, J. L. (1977). An “inner” variational principle for Markov fields on a graph. Z. Wahrsch. Verw. Gebiete 39 187-195. · Zbl 0366.60120
[13] Georgii, H.-O. (2011). Gibbs Measures and Phase Transitions , 2nd ed. de Gruyter, Berlin. · Zbl 1225.60001
[14] Israel, R. B. (1979). Convexity in the Theory of Lattice Gases . Princeton Univ. Press, Princeton, NJ. · Zbl 0399.46055
[15] Kallenberg, O. (1983). Random Measures , 3rd ed. Akademie Verlag, Berlin. · Zbl 0345.60032
[16] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[17] Mecke, J., Nagel, W. and Weiss, V. (2008). A global construction of homogeneous random planar tessellations that are stable under iteration. Stochastics 80 51-67. · Zbl 1139.60011
[18] Nagel, W. and Weiss, V. (2005). Crack STIT tessellations: Characterization of stationary random tessellations stable with respect to iteration. Adv. in Appl. Probab. 37 859-883. · Zbl 1098.60012
[19] Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations : Concepts and Applications of Voronoi Diagrams . Wiley, Chichester. · Zbl 0946.68144
[20] Redenbach, C. and Thäle, C. (2013). On the arrangement of cells in planar STIT and Poisson line tessellations. Methodol. Comput. Appl. Probab. 15 643-654. · Zbl 1274.60031
[21] Ross, S. M. (2003). Introduction to Probability Models , 8th ed. Academic Press, Amsterdam. · Zbl 1019.60003
[22] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry . Springer, Berlin. · Zbl 1175.60003
[23] Schreiber, T. and Thäle, C. (2010). Second-order properties and central limit theory for the vertex process of iteration infinitely divisible and iteration stable random tessellations in the plane. Adv. in Appl. Probab. 42 913-935. · Zbl 1221.60008
[24] Schreiber, T. and Thäle, C. (2011). Intrinsic volumes of the maximal polytope process in higher dimensional STIT tessellations. Stochastic Process. Appl. 121 989-1012. · Zbl 1227.60015
[25] Schreiber, T. and Thäle, C. (2012). Second-order theory for iteration stable tessellations. Probab. Math. Statist. 32 281-300. · Zbl 1270.60019
[26] Schreiber, T. and Thäle, C. (2013). Shape-driven nested Markov tessellations. Stochastics 85 510-531. · Zbl 1291.60022
[27] Schreiber, T. and Thäle, C. (2013). Limit theorems for iteration stable tessellations. Ann. Probab. 41 2261-2278. · Zbl 1279.60025
[28] Schreiber, T. and Thäle, C. (2013). Geometry of iteration stable tessellations: Connection with Poisson hyperplanes. Bernoulli 19 1637-1654. · Zbl 1291.60021
[29] Stoyan, D., Kendall, D. G. and Mecke, J. (1995). Stochastic Geometry , 2nd ed. Wiley, Chichester. · Zbl 0838.60002
[30] Thäle, C., Weiss, V. and Nagel, W. (2012). Spatial STIT tessellations: Distributional results for I-segments. Adv. in Appl. Probab. 44 635-654. · Zbl 1262.60015
[31] Varadhan, S. R. S. (1988). Large deviations and applications. In École D’Été de Probabilités de Saint-Flour XV-XVII , 1985 - 87. Lecture Notes in Math. 1362 1-49. Springer, Berlin. · Zbl 0661.60040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.