Ben Alaya, Mohamed; Kebaier, Ahmed Central limit theorem for the multilevel Monte Carlo Euler method. (English) Zbl 1320.60073 Ann. Appl. Probab. 25, No. 1, 211-234 (2015). The multilevel Monte Carlo method for the computation of quantities \(\mathbb E[f(X_T)]\), where \((X_t)_{0\leq t \leq T}\) is a diffusion process and \(f\) some function (e.g. to price options), yields a remarkable reduction of the complexity in contrast to crude Monte Carlo algorithms. In this paper, the authors derive a central limit theorem of Lindeberg-Feller type for the multilevel Monte Carlo Euler scheme. The main tool is a stable law convergence theorem for the Euler scheme error of two consecutive levels of the multilevel algorithm. This result gives a precise description for the choice of the parameters to run the multilevel Monte Carlo Euler scheme. The explicitly characterized limiting variance in the central limit theorem allows to construct more accurate confidence intervals. A complexity analysis confirms the efficiency of the multilevel method. Moreover, a Berry-Esseen type bound is established. Reviewer: Peter Parczewski (Mannheim) Cited in 21 Documents MSC: 60F05 Central limit and other weak theorems 65C05 Monte Carlo methods 62F12 Asymptotic properties of parametric estimators 60H35 Computational methods for stochastic equations (aspects of stochastic analysis) Keywords:central limit theorem; multilevel Monte Carlo methods; Euler scheme × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201 [2] Bouleau, N. and Lépingle, D. (1994). Numerical Methods for Stochastic Processes . Wiley, New York. · Zbl 0822.60003 [3] Creutzig, J., Dereich, S., Müller-Gronbach, T. and Ritter, K. (2009). Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math. 9 391-429. · Zbl 1177.65011 · doi:10.1007/s10208-008-9029-x [4] Dereich, S. (2011). Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction. Ann. Appl. Probab. 21 283-311. · Zbl 1220.60040 · doi:10.1214/10-AAP695 [5] Duffie, D. and Glynn, P. (1995). Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5 897-905. · Zbl 0877.65099 · doi:10.1214/aoap/1177004598 [6] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II , 2nd ed. Wiley, New York. · Zbl 0219.60003 [7] Giles, M. (2008). Improved multilevel Monte Carlo convergence using the Milstein scheme. In Monte Carlo and Quasi-Monte Carlo Methods 2006 343-358. Springer, Berlin. · Zbl 1141.65321 · doi:10.1007/978-3-540-74496-2_20 [8] Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Oper. Res. 56 607-617. · Zbl 1167.65316 · doi:10.1287/opre.1070.0496 [9] Giles, M. B., Higham, D. J. and Mao, X. (2009). Analysing multi-level Monte Carlo for options with nonglobally Lipschitz payoff. Finance Stoch. 13 403-413. · Zbl 1199.65008 · doi:10.1007/s00780-009-0092-1 [10] Giles, M. B. and Szpruch, L. (2013). Multilevel Monte Carlo Methods for Applications in Finance . World Scientific, Singapore. · Zbl 1277.91193 · doi:10.1142/9789814436434_0001 [11] Heinrich, S. (1998). Monte Carlo complexity of global solution of integral equations. J. Complexity 14 151-175. · Zbl 0920.65090 · doi:10.1006/jcom.1998.0471 [12] Heinrich, S. (2001). Multilevel Monte Carlo Methods. Lecture Notes in Computer Science 2179 58-67. Springer, Berlin. · Zbl 1031.65005 [13] Heinrich, S. and Sindambiwe, E. (1999). Monte Carlo complexity of parametric integration. J. Complexity 15 317-341. · Zbl 0958.68068 · doi:10.1006/jcom.1999.0508 [14] Hutzenthaler, M., Jentzen, A. and Kloeden, P. E. (2013). Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab. 23 1913-1966. · Zbl 1283.60098 · doi:10.1214/12-AAP890 [15] Jacod, J. (1997). On continuous conditional Gaussian martingales and stable convergence in law. In Séminaire de Probabilités , XXXI. Lecture Notes in Math. 1655 232-246. Springer, Berlin. · Zbl 0884.60038 · doi:10.1007/BFb0119308 [16] Jacod, J. and Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 267-307. · Zbl 0937.60060 · doi:10.1214/aop/1022855419 [17] Kebaier, A. (2005). Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing. Ann. Appl. Probab. 15 2681-2705. · Zbl 1099.65011 · doi:10.1214/105051605000000511 [18] Kloeden, P. E. and Platen, E. (1995). Numerical methods for stochastic differential equations. In Nonlinear Dynamics and Stochastic Mechanics 437-461. CRC Press, Boca Raton, FL. · Zbl 0858.65148 [19] Korn, R., Korn, E. and Kroisandt, G. (2010). Monte Carlo Methods and Models in Finance and Insurance . CRC Press, Boca Raton, FL. · Zbl 1196.91006 · doi:10.1201/9781420076196 [20] Protter, P. (1990). Stochastic Integration and Differential Equations. Applications of Mathematics ( New York ) 21 . Springer, Berlin. · Zbl 0694.60047 [21] Talay, D. and Tubaro, L. (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8 483-509 (1991). · Zbl 0718.60058 · doi:10.1080/07362999008809220 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.