zbMATH — the first resource for mathematics

Adaptivity in convolution models with partially known noise distribution. (English) Zbl 1320.62066
Summary: We consider a semiparametric convolution model. We observe random variables having a distribution given by the convolution of some unknown density \(f\) and some partially known noise density \(g\). In this work, \(g\) is assumed exponentially smooth with stable law having unknown self-similarity index \(s\). In order to ensure identifiability of the model, we restrict our attention to polynomially smooth, Sobolev-type densities \(f\), with smoothness parameter \(\beta\). In this context, we first provide a consistent estimation procedure for \(s\). This estimator is then plugged-into three different procedures: estimation of the unknown density \(f\), of the functional \(\int f^{2}\) and goodness-of-fit test of the hypothesis \(H_{0}:f=f_{0}\), where the alternative \(H_{1}\) is expressed with respect to \(\mathbb L_2\)-norm (i.e. has the form \(\psi_n^{-2}\|f-f_0\|^2_2\geq \mathcal C\)). These procedures are adaptive with respect to both \(s\) and \(\beta \) and attain the rates which are known optimal for known values of \(s\) and \(\beta \). As a by-product, when the noise density is known and exponentially smooth our testing procedure is optimal adaptive for testing Sobolev-type densities. The estimating procedure of \(s\) is illustrated on synthetic data.

62G05 Nonparametric estimation
62F12 Asymptotic properties of parametric estimators
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI Euclid arXiv
[1] Butucea, C. (2007). Goodness-of-fit testing and quadratic functional estimation from indirect observations., Ann. Statist. 35 , 5, 1907-1930. · Zbl 1126.62028 · doi:10.1214/009053607000000118 · euclid:aos/1194461716
[2] Butucea, C. and Comte, F. (2008). Adaptive estimation of linear functionals in the convolution model and applications., Bernoulli . · Zbl 1200.62022 · doi:10.3150/08-BEJ146
[3] Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model., Bernoulli 11 , 2, 309-340. · Zbl 1063.62044 · doi:10.3150/bj/1116340297
[4] Butucea, C., Matias, C., and Pouet, C. (2008). Adaptive goodness-of-fit testing from indirect observations., Annales de l’Institut Poincaré, Probabilités et Statistiques . · Zbl 1168.62040
[5] Butucea, C. and Tsybakov, A. B. (2007). Sharp optimality for density deconvolution with dominating bias. I., Theory Probab. Appl 52 , 1, 111-128. · Zbl 1141.62021 · doi:10.1137/S0040585X97982840
[6] Efromovich, S. (1997). Density estimation for the case of supersmooth measurement error., J. Amer. Statist. Assoc. 92 , 438, 526-535. · Zbl 0890.62027 · doi:10.2307/2965701
[7] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems., Ann. Statist. 19 , 3, 1257-1272. · Zbl 0729.62033 · doi:10.1214/aos/1176348248
[8] Holzmann, H., Bissantz, N., and Munk, A. (2007). Density testing in a contaminated sample., J. Multivariate Analysis 98 , 1, 57-75. · Zbl 1102.62045 · doi:10.1016/j.jmva.2005.09.010
[9] Ingster, Y. and Suslina, I. (2003)., Nonparametric goodness-of-fit testing under Gaussian models . Lecture Notes in Statistics. 169. Springer, New York. · Zbl 1013.62049
[10] Matias, C. (2002). Semiparametric deconvolution with unknown noise variance., ESAIM, Probab. Stat. 6 , 271-292. (electronic). · doi:10.1051/ps:2002015
[11] Meister, A. (2004). Deconvolution density estimation with a testing procedure for the error distribution. Tech. rep., Universität Stuttgart, 2004-004., http://www.mathematik.uni-stuttgart.de/preprints/listen/listen.php.
[12] Meister, A. (2006). Density estimation with normal measurement error with unknown variance., Statist. Sinica 16 , 1, 195-211. · Zbl 1087.62049
[13] Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvolution., J. Nonparametr. Statist. 7 , 4, 307-330. · Zbl 1003.62514 · doi:10.1080/10485259708832708
[14] Weron, R. (1996). On the Chambers-Mallows-Stuck method for simulating skewed stable random variables., Statist. Probab. Lett. 28 , 2, 165-171. · Zbl 0856.60022 · doi:10.1016/0167-7152(95)00113-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.