×

A powerful test based on tapering for use in functional data analysis. (English) Zbl 1320.62104

Summary: A test based on tapering is proposed for use in testing a global linear hypothesis under a functional linear model. The test statistic is constructed as a weighted sum of squared linear combinations of Fourier coefficients, a tapered quadratic form, in which higher Fourier frequencies are down-weighted so as to emphasize the smooth attributes of the model. A formula is \(Q_{n}^{\text{OPT}}=n\sum_{j=1}^{p_{n}}j^{-1/2}\|\mathbf{Y}_{n,j}\|^{2}\). Down-weighting by \(j^{ - 1/2}\) is selected to achieve adaptive optimality among tests based on tapering with respect to its “rates of testing”, an asymptotic framework for measuring a test’s retention of power in high dimensions under smoothness constraints. Existing tests based on truncation or thresholding are known to have superior asymptotic power in comparison with any test based on tapering; however, it is shown here that high-order effects can be substantial, and that a test based on \(Q_{n}^{\text{OPT}}\) exhibits better (non-asymptotic) power against the sort of alternatives that would typically be of concern in functional data analysis applications. The proposed test is developed for use in practice, and demonstrated in an example application.

MSC:

62G10 Nonparametric hypothesis testing
62J05 Linear regression; mixed models
46N30 Applications of functional analysis in probability theory and statistics

Software:

fda (R)

References:

[1] Abramovich, F., Antoniadis, A., Sapatinas, T., and Vidakovic, B. (2002). Optimal testing in functional analysis of variance models., Technical Report G02/2002. http://zoe.bme.gatech.edu/ \sim bv20/dpgatech.html. (See also, International Journal of Wavelets, Multiresolution, and Information Processing , 2:323-349.) · Zbl 1071.62037 · doi:10.1142/S0219691304000639
[2] Abramovich, F., Grinshtein, V., and Pensky, M. (2007). On optimality of Bayesian testimation in the normal means problem., Annals of Statistics 35 2261-2286. · Zbl 1126.62003 · doi:10.1214/009053607000000226
[3] Adams, R. A., and Fournier, J. J. F. (2003)., Sobolev Spaces . Academic Press, Boston. · Zbl 1098.46001
[4] Aerts, M., Claeskens, G., and Hart, J. (2000). Testing lack of fit in multiple regression., Biometrika 87 405-424. · Zbl 0948.62028 · doi:10.1093/biomet/87.2.405
[5] Brockwell, P. J., and Davis, R. A. (1991)., Time Series: Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[6] Claeskens, G., and Hjort, N. L. (2004). Goodness of fit via nonparametric likelihood ratios., Scandinavian Journal of Statistics 31 487-513. · Zbl 1065.62056 · doi:10.1111/j.1467-9469.2004.00403.x
[7] Eubank, R. (2000). Testing for no effects by cosine methods., Scandinavian Journal of Statistics 27 747-763. · Zbl 0962.62031 · doi:10.1111/1467-9469.00220
[8] Eubank, R., and Hart, J. (1992). Testing goodness-of-fit in regression via order selection criteria., Annals of Statistics 20 1412-1425. · Zbl 0776.62045 · doi:10.1214/aos/1176348775
[9] Eubank, R., and LaRiccia, V. N. (1992). Asymptotic comparison of Cramér-von Mises and nonparametric function estimation techniques for testing goodness of fit., Annals of Statistics 20 2071-2086. · Zbl 0769.62033 · doi:10.1214/aos/1176348903
[10] Fan, J. (1996). Tests of significance based on wavelet thresholding and Neyman’s truncation., Journal of the American Statistical Association 91 674-688. · Zbl 0869.62032 · doi:10.2307/2291663
[11] Fan, J., and Huang, L.-S. (2001). Goodness-of-fit testing for parametric regression models., Journal of the American Statistical Association 96 640-652. · Zbl 1017.62014 · doi:10.1198/016214501753168316
[12] Fan, J., and Lin, S.-K. (1998). Test of significance when data are curves., Journal of the American Statistical Association 93 1007-1021. · Zbl 1064.62525 · doi:10.1080/01621459.1998.10473763
[13] Fan, J., Zhang, C., and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon., Annals of Statistics 29 153-193. · Zbl 1029.62042 · doi:10.1214/aos/996986505
[14] Inglot, T., and Ledwina, T. (1996). Asymptotic optimality of data driven Neyman’s tests., Annals of Statistics 24 1982-2019. · Zbl 0905.62044 · doi:10.1214/aos/1069362306
[15] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives I-III., Mathematical Methods of Statistics 2 85-114; 3 171-189; 4 249-268. · Zbl 0798.62059
[16] Gayraud, G., and Pouet, C. (2005). Adaptive minimax testing in the discrete regression scheme., Probability Theory and Related Fields 133 531-558. · Zbl 1075.62029 · doi:10.1007/s00440-005-0445-4
[17] Horowitz, J. L., and Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative., Econometrica 69 599-631. · Zbl 1017.62012 · doi:10.1111/1468-0262.00207
[18] Lepski, O. V., and Spokoiny, V. G. (1999). Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative., Bernoulli 5 333-358. · Zbl 0946.62050 · doi:10.2307/3318439
[19] Mathai, A. M., and Provost, S. B. (1992)., Quadratic Forms in Random Variables: Theory and Applications . M. Dekker, New York. · Zbl 0792.62045
[20] Rayner, J. C. W., and Best, D. J. (1989)., Smooth Tests of Goodness-of-Fit . Oxford University Press, Oxford. · Zbl 0731.62064
[21] Ramsay, J. O., and Silverman, B. W. (2005)., Functional Data Analysis , 2nd ed. Springer, New York. (Website: www.functionaldata.org) · Zbl 1079.62006
[22] Seber, G. A. F. (2003)., Linear Regression Analysis , 2nd ed. Wiley, New York. · Zbl 1029.62059
[23] Spitzner, D. J. (2006), Use of goodness-of-fit procedures in high-dimensional testing., Journal of Statistical Computation and Simulation 76 447-457. · Zbl 1099.62044 · doi:10.1080/10629360500107907
[24] Spitzner, D. J. (2008A). Testing in functional data analysis using quadratic forms., Technical Report Series 08-01. University of Virginia, Department of Statistics, Charlottesville, VA. · Zbl 1320.62104
[25] Spitzner, D. J. (2008B). An asymptotic viewpoint on high-dimensional Bayesian testing., Bayesian Analysis . 3 121-160. · Zbl 1330.62088 · doi:10.1214/08-BA305
[26] Spitzner, D. J., Marron, J. S., and Essick, G. (2003). Mixed-model functional ANOVA for studying human tactile perception., Journal of the American Statistical Association 98 263-272. · doi:10.1198/016214503000035
[27] Spitzner, D. J., and Marshall, J. (2009). Directed spatio-temporal monitoring of disease incidence rates. In, preparation.
[28] Spitzner, D. J., and Woodall, W. H. (2003). High-dimensional directed testing for monitoring functional profiles., Proceedings of the American Statistical Association 225-236.
[29] Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets., Annals of Statistics 24 2477-2498. · Zbl 0898.62056 · doi:10.1214/aos/1032181163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.