Breuil, Christophe; Herzig, Florian Ordinary representations of \(G(\mathbb{Q}_p)\) and fundamental algebraic representations. (English) Zbl 1321.22019 Duke Math. J. 164, No. 7, 1271-1352 (2015). From the paper: “The \(p\)-adic Langlands program for the group \(\text{GL}_2(\mathbb{Q}_p)\) is now well understood, from both local and global points of view (see [Proceed. Intern. Congress of Math., II, Hindustan Book Agency, New Delhi, 203–230 (2010)] for an overview). In particular, to (essentially) any continuous representation \(\rho: \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\to\text{GL}_2(E)\) (where \(E\) is a finite extension of \(\mathbb{Q}_p\)) one can associate a unitary continuous representation \(\Pi(\rho)\) of \(\text{GL}_2(E)\) on a \(p\)-adic Banach space over \(E\). Likewise, to (essentially) any continuous representation \(\overline\rho: \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\to \text{GL}2_(k_E)\) (where \(k_E\) is the residue field of \(E\)), one can associate a smooth representation \(\Pi(\overline\rho)\) of \(\text{GL}_2(\mathbb{Q}_p)\) over \(k_E\). It is moreover expected that the \(p\)-adic Langlands correspondence – if there is one – for any other group beyond \(\text{GL}_2(\mathbb{Q}_p)\) (e.g. \(\text{GL}_2(L)\) or \(\text{GL}_3(\mathbb{Q}_p)\) or \(\text{GSp}_4(\mathbb{Q}_p)\)) will be significantly more involved than that for \(\text{GL}_2(\mathbb{Q}_p)\). The aim of the present work is nevertheless to start to investigate the possible shape of the representation(s) \(\pi(\rho)\) and \(\Pi(\overline\rho)\) when \(\rho\), \(\overline\rho\) take values in split reductive groups other than \(\text{GL}_2\).” “Let \(G\) be a split connected reductible algebraic group over \(\mathbb{Q}_p\) such that both \(G\) and its dual group \(G\) have connected centers. Motivated by a hypothetical \(p\)-adic Langlands correspondence for \(G(\mathbb{Q}_p)\), we associate to an \(n\)-dimensional ordinary (i.e. Borel-valued) representation \(\rho:\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\to\widehat G(E)\) a unitary Banach space representation \(\Pi(\rho)^{\text{ord}}\) of \(G(\mathbb{Q}_p)\) over \(E\) that is built out of principal series representations. Our construction is inspired by the ‘ordinary part’ of the tensor product of all fundamental algebraic representations of \(G\). There is an analogous construction over a finite extension of \(\mathbb{F}_p\). When \(G=\text{GL}\), we show under suitable hypotheses that \(\Pi(\rho)^{\text{ord}}\) occurs in the \(p\)-part of the cohomology of a compact unitary group.” Reviewer: Andrzej Dąbrowski (Szczecin) Cited in 6 ReviewsCited in 22 Documents MSC: 22E50 Representations of Lie and linear algebraic groups over local fields 11F80 Galois representations 11F70 Representation-theoretic methods; automorphic representations over local and global fields Keywords:\(p\)-adic Langlands; \(\text{mod\,}p\) Langlands; Galois representations; representations of \(p\)-adic groups; fundamental algebraic representations; local-global compatibility × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] N. Abe, On a classification of irreducible admissible modulo \(p\) representations of a \(p\)-adic split reductive group , Compos. Math. 149 (2013), 2139-2168. · Zbl 1369.22007 · doi:10.1112/S0010437X13007379 [2] T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, Potential automorphy and change of weight , Ann. of Math. (2) 179 (2014), 501-609. · Zbl 1310.11060 · doi:10.4007/annals.2014.179.2.3 [3] L. Barthel and R. Livné, Irreducible modular representations of \(\operatorname{GL}_{2}\) of a local field , Duke Math. J. 75 (1994), 261-292. · Zbl 0826.22019 · doi:10.1215/S0012-7094-94-07508-X [4] J. Bergdall and P. Chojecki, Ordinary representations and companion points for \(U(3)\) in the indecomposable case , preprint, [math.NT]. arXiv:1405.3026v1 [5] A. Borel, Linear Algebraic Groups , 2nd ed., Grad. Texts in Math. 126 , Springer, New York, 1991. · Zbl 0726.20030 [6] A. Borel and J. Tits, Groupes réductifs , Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55-150. · Zbl 0145.17402 · doi:10.1007/BF02684375 [7] N. Bourbaki, Éléments de mathématique: Groupes et algèbres de Lie, chapitres 4-6 , Masson, Paris, 1981. [8] C. Breuil, “The emerging \(p\)-adic Langlands programme” in Proceedings of the International Congress of Mathematicians, II , Hindustan Book Agency, New Delhi, 2010, 203-230. [9] C. Breuil, Towards the locally analytic socle for \(\operatorname{GL}_{n}\) , notes for a course, Beijing, 2013. [10] C. Breuil, Vers le socle localement analytique pour \(\operatorname{GL}_{n}\), I , preprint, 2013. · Zbl 1378.11060 · doi:10.1007/s00208-014-1086-7 [11] C. Breuil, Induction parabolique et \((\varphi,\Gamma)\)-modules , preprint, 2014. [12] C. Breuil, Vers le socle localement analytique pour \(\operatorname{GL}_{n}\), II , Math. Ann., published electronically 24 August 2014. · Zbl 1378.11060 · doi:10.1007/s00208-014-1086-7 [13] C. Breuil and V. Paškūnas, Towards a modulo \(p\) Langlands correspondence for \(\operatorname{GL}_{2}\) , Mem. Amer. Math. Soc. 216 , Amer. Math. Soc., Providence, 2012. · Zbl 1245.22010 · doi:10.1090/S0065-9266-2011-00623-4 [14] K. Buzzard, F. Diamond, and F. Jarvis, On Serre’s conjecture for mod \(\ell\) Galois representations over totally real fields , Duke Math. J. 155 (2010), 105-161. · Zbl 1227.11070 · doi:10.1215/00127094-2010-052 [15] K. Buzzard and T. Gee, “The conjectural connections between automorphic representations and Galois representations” in Proceedings of the London Mathematical Society Durham Symposium 2011: Automorphic Forms and Galois Representations , London Math. Soc. Lecture Note Ser. 414 , London Math. Soc., London, 135-187. · Zbl 1377.11067 [16] P. Colmez, Représentations de \(\operatorname{GL}_{2}(\mathbb{Q}_{p})\) et \((\varphi,\Gamma)\)-modules , Astérisque 330 (2010), 281-509. [17] P. Colmez, G. Dospinescu, and V. Paškūnas, The \(p\)-adic local Langlands correspondence for \(\operatorname{GL}_{2}(\mathbb{Q}_{p})\) , Cambridge J. Math. 2 (2014), 1-47. · Zbl 1312.11090 · doi:10.4310/CJM.2014.v2.n1.a1 [18] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields , Ann. of Math. (2) 103 (1976), 103-161. · Zbl 0336.20029 · doi:10.2307/1971021 [19] M. Emerton, A local-global compatibility conjecture in the \(p\)-adic Langlands programme for \(\operatorname{GL}_{2/{\mathbb{Q}}}\) , Pure Appl. Math. Q. 2 (2006), 279-393. · Zbl 1254.11106 · doi:10.4310/PAMQ.2006.v2.n2.a1 [20] M. Emerton, Ordinary parts of admissible representations of \(p\)-adic reductive groups, I: Definition and first properties , Astérisque 331 (2010), 355-402. · Zbl 1205.22013 [21] M. Emerton, Ordinary parts of admissible representations of \(p\)-adic reductive groups, II: Derived functors , Astérisque 331 (2010), 403-459. · Zbl 1205.22014 [22] M. Emerton, Local-global compatibility in the \(p\)-adic Langlands programme for \(\operatorname{GL}_{2/{\mathbb{Q}}}\) , preprint, 2011, . · Zbl 1254.11106 · doi:10.4310/PAMQ.2006.v2.n2.a1 [23] M. Emerton, T. Gee, and F. Herzig, Weight cycling and Serre-type conjectures for unitary groups , Duke Math. J. 162 (2013), 1649-1722. · Zbl 1283.11083 · doi:10.1215/00127094-2266365 [24] W. Fulton and J. Harris, Representation Theory: A First Course , Grad. Texts in Math. 129 , Springer, New York, 1991. · Zbl 0744.22001 [25] W. T. Gan and S. Takeda, The local Langlands conjecture for \(\operatorname{GSp}(4)\) , Ann. of Math. (2) 173 (2011), 1841-1882. · Zbl 1230.11063 · doi:10.4007/annals.2011.173.3.12 [26] T. Gee and D. Geraghty, Companion forms for unitary and symplectic groups , Duke Math. J. 161 (2012), 247-303. · Zbl 1295.11043 · doi:10.1215/00127094-1507376 [27] D. J. Geraghty, Modularity lifting theorems for ordinary Galois representations , Ph.D. dissertation, Harvard University, Cambridge, Mass., 2009. [28] J. Hauseux, Extensions entre séries principales \(p\)-adiques et modulo \(p\) de \(G(F)\) , to appear in J. Institut Math. Jussieu, preprint, [math.RT]. arXiv:1307.1818v3 · Zbl 1338.22008 · doi:10.1017/S1474748014000243 [29] J. Hauseux, Sur une conjecture de Breuil-Herzig , preprint, [math.RT]. arXiv:1405.6371v2 [30] F. Herzig, The weight in a Serre-type conjecture for tame \(n\)-dimensional Galois representations , Duke Math. J. 149 (2009), 37-116. · Zbl 1232.11065 · doi:10.1215/00127094-2009-036 [31] F. Herzig, The classification of irreducible admissible mod \(p\) representations of a \(p\)-adic \(\operatorname{GL}_{n}\) , Invent. Math. 186 (2011), 373-434. · Zbl 1235.22030 · doi:10.1007/s00222-011-0321-z [32] F. Herzig and S. Morra, On mod \(p\) local-global compatibility for \(\mathrm{GL}_{3}\) in the ordinary case , in preparation. · Zbl 1420.11089 [33] F. Herzig and J. Tilouine, Conjecture de type de Serre et formes compagnons pour \(\operatorname{GSp}_{4}\) , J. Reine Angew. Math. 676 (2013), 1-32. · Zbl 1312.11042 · doi:10.1515/CRELLE.2011.190 [34] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory , Grad. Texts in Math. 9 , Springer, New York, 1978. · Zbl 0447.17001 [35] J. C. Jantzen, Representations of Algebraic Groups , 2nd ed., Math. Surveys Monogr. 107 , Amer. Math. Soc., Providence, 2003. · Zbl 1034.20041 [36] J.-P. Labesse, “Changement de base CM et séries discrètes” in On the Stabilization of the Trace Formula , Stab. Trace Formula Shimura Var. Arith. Appl. 1 , Int. Press, Somerville, Mass., 2011, 429-470. [37] R. Ollivier, Critère d’irréductibilité pour les séries principales de \(\operatorname{GL}_{n}(F)\) en caractéristique \(p\) , J. Algebra 304 (2006), 39-72. · Zbl 1108.22012 · doi:10.1016/j.jalgebra.2006.03.047 [38] S. Orlik and M. Strauch, On the irreducibility of locally analytic principal series representations , Represent. Theory 14 (2010), 713-746. · Zbl 1247.22018 · doi:10.1090/S1088-4165-2010-00387-8 [39] V. Paškūnas, The image of Colmez’s Montreal functor , Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1-191. · Zbl 1297.22021 · doi:10.1007/s10240-013-0049-y [40] M. Rapoport, A positivity property of the Satake isomorphism , Manuscripta Math. 101 (2000), 153-166. · Zbl 0941.22006 · doi:10.1007/s002290050010 [41] P. Schneider, Nonarchimedean Functional Analysis , Springer Monogr. Math., Springer, Berlin, 2002. · Zbl 0998.46044 [42] P. Schneider, “Continuous representation theory of \(p\)-adic Lie groups” in International Congress of Mathematicians, II , Eur. Math. Soc., Zürich, 2006, 1261-1282. · Zbl 1138.22014 [43] P. Schneider and J. Teitelbaum, \(U(\mathfrak{g})\)-finite locally analytic representations , with an appendix by D. Prasad, Represent. Theory 5 (2001), 111-128. · Zbl 1028.17007 · doi:10.1090/S1088-4165-01-00109-1 [44] P. Schneider and M.-F. Vigneras, “A functor from smooth \(o\)-torsion representations to \((\phi,\Gamma)\)-modules” in On Certain \(L\)-Functions , Clay Math. Proc. 13 , Amer. Math. Soc., Providence, 2011, 525-601. · Zbl 1278.11061 [45] B. Schraen, Sur la présentation des représentations supersingulières de \(\operatorname{GL}_{2}(F)\) , J. Reine Angew. Math., published electronically 23 July 2013. [46] C. M. Sorensen, Potential level-lowering for \(\operatorname{GSp}(4)\) , J. Inst. Math. Jussieu 8 (2009), 595-622. · Zbl 1257.11044 · doi:10.1017/S147474800900005X [47] T. A. Springer and R. Steinberg, “Conjugacy classes” in Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) , Lecture Notes in Math. 131 , Springer, Berlin, 1970, 167-266. · doi:10.1007/BFb0081546 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.