×

zbMATH — the first resource for mathematics

Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of Lévy processes. (English) Zbl 1321.47098
Summary: We introduce a class of Lévy processes subject to specific regularity conditions, and consider their Feynman-Kac semigroups given under a Kato-class potential. Using new techniques, first we analyze the rate of decay of eigenfunctions at infinity. We prove bounds on \(\lambda\)-subaveraging functions, from which we derive two-sided sharp pointwise estimates on the ground state, and obtain upper bounds on all other eigenfunctions. Next, by using these results, we analyze intrinsic ultracontractivity and related properties of the semigroup refining them by the concept of ground state domination and asymptotic versions. We establish the relationships of these properties, derive sharp necessary and sufficient conditions for their validity in terms of the behavior of the Lévy density and the potential at infinity, define the concept of borderline potential for the asymptotic properties and give probabilistic and variational characterizations. These results are amply illustrated by key examples.

MSC:
47D08 Schrödinger and Feynman-Kac semigroups
60G51 Processes with independent increments; Lévy processes
47D03 Groups and semigroups of linear operators
47G20 Integro-differential operators
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Alziary, B. and Takáč, P. (2009). Intrinsic ultracontractivity of a Schrödinger semigroup in \(\mathbb{R}^{N}\). J. Funct. Anal. 256 4095-4127. · Zbl 1181.47049
[2] Applebaum, D. (2009). Lévy Processes and Stochastic Calculus , 2nd ed. Cambridge Univ. Press, Cambridge. · Zbl 1200.60001
[3] Bañuelos, R. (1991). Intrinsic ultracontractivity and eigenfunction estimates for Schrödinger operators. J. Funct. Anal. 100 181-206. · Zbl 0766.47025
[4] Bañuelos, R. and Davis, B. (1992). A geometrical characterization of intrinsic ultracontractivity for planar domains with boundaries given by the graphs of functions. Indiana Univ. Math. J. 41 885-913. · Zbl 0836.60082
[5] Bañuelos, R. and Yolcu, S. Y. (2013). Heat trace of nonlocal operators. J. Lond. Math. Soc. (2) 87 304-318. · Zbl 1270.35142
[6] Berg, C. and Forst, G. (1975). Potential Theory on Locally Compact Abelian Groups . Springer, New York. · Zbl 0308.31001
[7] Bertoin, J. (1996). Lévy Processes . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003
[8] Bertoin, J. (1999). Subordinators: Examples and applications. In École d’Été de Probabilités de St. Flour XXVII (P. Bernard, ed.). LNM 1717 4-79. Springer, Berlin. · Zbl 0955.60046
[9] Betz, V. and Lőrinczi, J. (2003). Uniqueness of Gibbs measures relative to Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 39 877-889. · Zbl 1025.60043
[10] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory . Academic Press, New York. · Zbl 0169.49204
[11] Bogdan, K. and Byczkowski, T. (1999). Potential theory for the \(\alpha\)-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133 53-92. · Zbl 0923.31003
[12] Bogdan, K. and Byczkowski, T. (2000). Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20 293-335. · Zbl 0996.31003
[13] Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R. and Vondraček, Z. (2009). Potential Analysis of Stable Processes and Its Extensions (P. Graczyk, and A. Stós, eds.). Lecture Notes in Math. 1980 . Springer, Berlin.
[14] Bogdan, K., Kumagai, T. and Kwaśnicki, M. (2015). Boundary Harnack inequality for Markov processes with jumps. Trans. Amer. Math. Soc. 367 477-517. · Zbl 1309.60080
[15] Bogdan, K. and Sztonyk, P. (2007). Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian. Studia Math. 181 101-123. · Zbl 1223.47038
[16] Burdzy, K. and Kulczycki, T. (2003). Stable processes have thorns. Ann. Probab. 31 170-194. · Zbl 1019.60035
[17] Carmona, R. (1978). Pointwise bounds for Schrödinger eigenstates. Comm. Math. Phys. 62 97-106. · Zbl 0403.47016
[18] Carmona, R., Masters, W. C. and Simon, B. (1990). Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 117-142. · Zbl 0716.35006
[19] Chen, Z.-Q., Kim, P. and Kumagai, T. (2011). Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. 363 5021-5055. · Zbl 1234.60088
[20] Chen, Z.-Q., Kim, P. and Song, R. (2011). Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbation. Trans. Amer. Math. Soc. 367 5237-5270. · Zbl 1321.60149
[21] Chen, Z.-Q., Kim, P. and Song, R. (2011). Heat kernel estimates for \(\Delta+\Delta^{\alpha/2}\) in \(C^{1,1}\) open sets. J. Lond. Math. Soc. (2) 84 58-80. · Zbl 1229.60089
[22] Chen, Z.-Q., Kim, P. and Song, R. (2012). Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab. 40 213-244. · Zbl 1235.60101
[23] Chen, Z.-Q. and Kumagai, T. (2003). Heat kernel estimates for stable-like processes on \(d\)-sets. Stochastic Process. Appl. 108 27-62. · Zbl 1075.60556
[24] Chen, Z.-Q. and Kumagai, T. (2008). Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 277-317. · Zbl 1131.60076
[25] Chen, Z.-Q. and Kumagai, T. (2010). A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoam. 26 551-589. · Zbl 1200.60065
[26] Chen, Z.-Q. and Song, R. (1997). Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150 204-239. · Zbl 0886.60072
[27] Chen, Z.-Q. and Song, R. (2000). Intrinsic ultracontractivity, conditional lifetimes and conditional gauge for symmetric stable processes on rough domains. Illinois J. Math. 44 138-160. · Zbl 0959.60035
[28] Chen, Z.-Q. and Song, R. (2002). General gauge and conditional gauge theorems. Ann. Probab. 30 1313-1339. · Zbl 1017.60086
[29] Chung, K. L. and Walsh, J. B. (2005). Markov Processes , Brownian Motion , and Time Symmetry , 2nd ed. Springer, New York. · Zbl 1082.60001
[30] Chung, K. L. and Zhao, Z. X. (1995). From Brownian Motion to Schrödinger’s Equation . Springer, Berlin. · Zbl 0819.60068
[31] Davies, E. B. (1989). Heat Kernels and Spectral Theory . Cambridge Univ. Press, Cambridge. · Zbl 0699.35006
[32] Davies, E. B. and Simon, B. (1984). Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59 335-395. · Zbl 0568.47034
[33] Davis, B. (1991). Intrinsic ultracontractivity and the Dirichlet Laplacian. J. Funct. Anal. 100 162-180. · Zbl 0766.47026
[34] Frank, R. L., Lieb, E. H. and Seiringer, R. (2008). Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21 925-950. · Zbl 1202.35146
[35] Fristedt, B. (1974). Sample functions of stochastic processes with stationary, independent increments. In Advances in Probability and Related Topics 3 241-396. Dekker, New York. · Zbl 0309.60047
[36] Garbaczewski, P., Stephanovich, V. and Ke\ogonek dzierski, D. (2011). Heavy-tailed targets and (ab)normal asymptotics in diffusive motion. Phys. A 390 990-1008.
[37] Grzywny, T. (2008). Intrinsic ultracontractivity for Lévy processes. Probab. Math. Statist. 28 91-106. · Zbl 1146.60043
[38] Grzywny, T. and Ryznar, M. (2012). Potential theory of one-dimensional geometric stable processes. Colloq. Math. 129 7-40. · Zbl 1276.60083
[39] Hairer, M., Stuart, A. M. and Voss, J. (2007). Analysis of SPDEs arising in path sampling. II. The nonlinear case. Ann. Appl. Probab. 17 1657-1706. · Zbl 1140.60329
[40] Hairer, M., Stuart, A. M., Voss, J. and Wiberg, P. (2005). Analysis of SPDEs arising in path sampling. I. The Gaussian case. Commun. Math. Sci. 3 587-603. · Zbl 1138.60326
[41] Hiroshima, F., Ichinose, T. and Lőrinczi, J. (2012). Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian. Rev. Math. Phys. 24 1250013, 40. · Zbl 1408.81020
[42] Hiroshima, F. and Lőrinczi, J. (2012). Lieb-Thirring bound for Schrödinger operators with Bernstein functions of the Laplacian. Commun. Stoch. Anal. 6 589-602. · Zbl 1331.47064
[43] Ikeda, N. and Watanabe, S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 79-95. · Zbl 0118.13401
[44] Jacob, N. (2003-2005). Pseudo Differential Operators and Markov Processes : Markov Processes and Applications , Vols. 1 - 3. Imperial College Press, London.
[45] Kaleta, K. (2012). Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval. Studia Math. 209 267-287. · Zbl 1257.47049
[46] Kaleta, K. and Kulczycki, T. (2010). Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians. Potential Anal. 33 313-339. · Zbl 1198.47060
[47] Kaleta, K. and Lőrinczi, J. (2012). Fractional \(P(\phi)_{1}\)-processes and Gibbs measures. Stochastic Process. Appl. 122 3580-3617. · Zbl 1272.47053
[48] Kim, P. and Song, R. (2008). Intrinsic ultracontractivity of nonsymmetric diffusions with measure-valued drifts and potentials. Ann. Probab. 36 1904-1945. · Zbl 1175.47039
[49] Kim, P. and Song, R. (2009). Intrinsic ultracontractivity for nonsymmetric Lévy processes. Forum Math. 21 43-66. · Zbl 1175.47040
[50] Kim, P., Song, R. and Vondraček, Z. (2012). Potential theory of subordinate Brownian motions revisited. In Stochastic Analysis and Applications to Finance. Interdiscip. Math. Sci. 13 243-290. World Sci. Publ., Hackensack, NJ. · Zbl 1282.60076
[51] Kim, P., Song, R. and Vondraček, Z. (2012). Uniform boundary Harnack principle for rotationally symmetric Lévy processes in general open sets. Sci. China Math. 55 2317-2333. · Zbl 1262.60077
[52] Kim, P., Song, R. and Vondraček, Z. (2013). Potential theory of subordinate Brownian motions with Gaussian components. Stochastic Process. Appl. 123 764-795. · Zbl 1266.31007
[53] Knobloch, R. and Partzsch, L. (2010). Uniform conditional ergodicity and intrinsic ultracontractivity. Potential Anal. 33 107-136. · Zbl 1197.47057
[54] Knopova, V. and Schilling, R. L. (2013). A note on the existence of transition probability densities of Lévy processes. Forum Math. 25 125-149. · Zbl 1269.60050
[55] Kulczycki, T. (1998). Intrinsic ultracontractivity for symmetric stable processes. Bull. Pol. Acad. Sci. Math. 46 325-334. · Zbl 0917.60071
[56] Kulczycki, T. (2013). Gradient estimates of \(q\)-harmonic functions of fractional Schrödinger operator. Potential Anal. 39 69-98. · Zbl 1317.35283
[57] Kulczycki, T. and Siudeja, B. (2006). Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes. Trans. Amer. Math. Soc. 358 5025-5057. · Zbl 1112.47034
[58] Kwaśnicki, M. (2009). Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential Anal. 31 57-77. · Zbl 1180.47031
[59] Lieb, E. H. and Seiringer, R. (2010). The Stability of Matter in Quantum Mechanics . Cambridge Univ. Press, Cambridge. · Zbl 1179.81004
[60] Lőrinczi, J., Hiroshima, F. and Betz, V. (2011). Feynman-Kac-Type Theorems and Gibbs Measures on Path Space. With Applications to Rigorous Quantum Field Theory. de Gruyter Studies in Mathematics 34 . de Gruyter, Berlin. · Zbl 1236.81003
[61] Lőrinczi, J. and Małecki, J. (2012). Spectral properties of the massless relativistic harmonic oscillator. J. Differential Equations 253 2846-2871. · Zbl 1272.47063
[62] Méndez-Hernández, P. J. (2000). Toward a geometric characterization of intrinsic ultracontractivity for Dirichlet Laplacians. Michigan Math. J. 47 79-99. · Zbl 0978.47032
[63] Mendez-Hernandez, P. J. and Murata, M. (2009). Semismall perturbations, semi-intrinsic ultracontractivity, and integral representations of nonnegative solutions for parabolic equations. J. Funct. Anal. 257 1799-1827. · Zbl 1172.58007
[64] Murata, M. (2002). Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations. J. Funct. Anal. 194 53-141. · Zbl 1119.35317
[65] Murata, M. (2007). Integral representations of nonnegative solutions for parabolic equations and elliptic Martin boundaries. J. Funct. Anal. 245 177-212. · Zbl 1116.58026
[66] Pinchover, Y. (1989). Criticality and ground states for second-order elliptic equations. J. Differential Equations 80 237-250. · Zbl 0697.35036
[67] Pinchover, Y. (1999). Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations. Math. Ann. 314 555-590. · Zbl 0928.35010
[68] Pruitt, W. E. (1981). The growth of random walks and Lévy processes. Ann. Probab. 9 948-956. · Zbl 0477.60033
[69] Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics. Analysis of Operators 4 . Academic Press, New York. · Zbl 0459.46001
[70] Rosiński, J. (2007). Tempering stable processes. Stochastic Process. Appl. 117 677-707. · Zbl 1118.60037
[71] Ryznar, M. (2002). Estimates of Green function for relativistic \(\alpha\)-stable process. Potential Anal. 17 1-23. · Zbl 1004.60047
[72] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions . Cambridge Univ. Press, Cambridge. · Zbl 0973.60001
[73] Schilling, R. L., Song, R. and Vondraček, Z. (2010). Bernstein Functions . de Gruyter, Berlin.
[74] Šikić, H., Song, R. and Vondraček, Z. (2006). Potential theory of geometric stable processes. Probab. Theory Related Fields 135 547-575. · Zbl 1099.60051
[75] Simon, B. (2005). Functional Integration and Quantum Physics , 2nd ed. AMS Chelsea Publishing, Providence, RI. · Zbl 1061.28010
[76] Song, R. (2006). Two-sided estimates on the density of the Feynman-Kac semigroups of stable-like processes. Electron. J. Probab. 11 146-161. · Zbl 1112.60059
[77] Tomisaki, M. (2007). Intrinsic ultracontractivity and small perturbation for one-dimensional generalized diffusion operators. J. Funct. Anal. 251 289-324. · Zbl 1135.47044
[78] Zhao, Z. (1991). A probabilistic principle and generalized Schrödinger perturbation. J. Funct. Anal. 101 162-176. · Zbl 0748.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.