×

Logarithmic asymptotics for multidimensional extremes under nonlinear scalings. (English) Zbl 1321.60048

Summary: Let \(\mathbf{W}=\{\mathbf{W}_n: n\in \mathbb{N}\}\) be a sequence of random vectors in \(\mathbb{R}^d\), \(d\geq 1\). In this paper, we consider the logarithmic asymptotics of the extremes of \(\mathbf{W}\), that is, for any vector \(\mathbf{q}>0\) in \(\mathbb{R}^d\), we find \(\log\mathbb{P}(\exists n\in \mathbb{N}: \mathbf{W}_n>u\mathbf{q})\) as \(u\to \infty\). We follow the approach of the restricted large deviation principle introduced in [K. Duffy et al., Ann. Appl. Probab. 13, No. 2, 430–445 (2003; Zbl 1032.60025)]. That is, we assume that for every \(\mathbf{q}\geq 0\) and some scalings \(\{a_n\}\), \(\{v_n\}\), \((1/v_n)\log\mathbb{P}(\mathbf{W}_n/a_n\geq u\mathbf{q})\) has a – continuous in \(q\) – limit \(J_{\mathbf{W}}(\mathbf{q})\). We allow the scalings \(\{a_n\}\) and \(\{v_n\}\) to be regularly varying with a positive index.is approach is general enough to incorporate sequences \(\mathbf{W}\) such that the probability law of \(\mathbf{W}_n/a_n\) satisfies the large deviation principle with continuous, not necessarily convex, rate functions. The equations for these asymptotics are in agreement with the literature.

MSC:

60F10 Large deviations
60G70 Extreme value theory; extremal stochastic processes

Citations:

Zbl 1032.60025

References:

[1] Adler, R. J. (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes (Inst. Math. Statist. Lecture Notes Monogr. Ser. 12 ). Institute of Mathematical Statistics, Hayward, CA. · Zbl 0747.60039
[2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge University Press. · Zbl 0617.26001
[3] Collamore, J. F. (1996). Hitting probabilities and large deviations. Ann. Prob. 24, 2065-2078. · Zbl 0879.60021 · doi:10.1214/aop/1041903218
[4] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications , 2nd edn. Springer, New York. · Zbl 0896.60013
[5] Dȩbicki, K., Kosiński, K. M., Mandjes, M. and Rolski, T. (2010). Extremes of multidimensional Gaussian processes. Stoch. Process. Appl. 120, 2289-2301. · Zbl 1214.60010 · doi:10.1016/j.spa.2010.08.010
[6] Duffield, N. G. and O’Connell, N. (1995). Large deviations and overflow probabilities for the general single-server queue, with applications. Math. Proc. Camb. Phil. Soc. 118, 363-374. · Zbl 0840.60087 · doi:10.1017/S0305004100073709
[7] Duffy, K. R. and Sapozhnikov, A. (2008). The large deviation principle for the on-off Weibull sojourn process. J. Appl. Prob. 45, 107-117. · Zbl 1137.60012 · doi:10.1239/jap/1208358955
[8] Duffy, K., Lewis, J. T. and Sullivan, W. G. (2003). Logarithmic asymptotics for the supremum of a stochastic process. Ann. Appl. Prob. 13, 430-445. · Zbl 1032.60025 · doi:10.1214/aoap/1050689587
[9] Glynn, P. W. and Whitt, W. (1994). Logarithmic asymptotics for steady-state tail probabilities in a single-server queue. In Studies in Applied Probability (J. Appl. Prob. Spec. Vol. 31A ), Applied Probability Trust, Sheffield, pp. 131-156. · Zbl 0805.60093 · doi:10.1017/S002190020010703X
[10] Kesidis, G., Walrand, J. and Chang, C.-S. (1993). Effective bandwidths for multiclass Markov fluids and other ATM sources. IEEE/ACM Trans. Networking 1, 424-428.
[11] Lelarge, M. (2008). Tail asymptotics for discrete event systems. Discrete Event Dyn. Syst. 18, 563-584. · Zbl 1185.93081 · doi:10.1007/s10626-008-0037-4
[12] Ney, P. and Nummelin, E. (1987). Markov additive processes. I. Eigenvalue properties and limit theorems. Ann. Prob. 15, 561-592. · Zbl 0625.60027 · doi:10.1214/aop/1176992159
[13] Ney, P. E. and Robinson, S. M. (1995). Polyhedral approximation of convex sets with an application to large deviation probability theory. J. Convex Anal. 2, 229-240. · Zbl 0835.60021
[14] Reich, E. (1958). On the integrodifferential equation of Takács. I. Ann. Math. Statist. 29, 563-570. · Zbl 0086.33703 · doi:10.1214/aoms/1177706632
[15] Rockafellar, R. T. (1970). Convex Analysis . Princeton University Press. \endharvreferences · Zbl 0193.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.