×

A Hsu-Robbins-Erdős strong law in first-passage percolation. (English) Zbl 1321.60199

In this paper, a systematic study of the regime for polynomial decay (RPD) of the probability tails is carried out. A precise characterization of the RPD in terms of a moment condition is derived, and, as a consequence, the result improves the statement of the shape theorem without strengthening its hypothesis. In general, the obtained results strengthen earlier strong laws in first-passage percolation, in particular the shape theorem due to D. Richardson [Proc. Camb. Philos. Soc. 74, 515–528 (1973; Zbl 0295.62094)] and J. T. Cox and R. Durrett [Ann. Probab. 9, 583–603 (1981; Zbl 0462.60012)], which states the precise conditions under which the set of points in \(Z^d\) within distance \(t\) from the origin, rescaled by \(t\), converges to a deterministic compact or convex set.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
60F15 Strong limit theorems
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Ahlberg, D. (2015). Asymptotics of first-passage percolation on one-dimensional graphs. Adv. in Appl. Probab. 47 182-209. · Zbl 1310.60136
[2] Ahlberg, D. (2015). Convergence towards an asymptotic shape in first-passage percolation on cone-like subgraphs of the integer lattice. J. Theoret. Probab. 28 198-222. · Zbl 1316.60141
[3] Ahlberg, D. (2008). Asymptotics of first-passage percolation on 1-dimensional graphs. Licentiate thesis, Univ. Gothenburg. · Zbl 1310.60136
[4] Antal, P. and Pisztora, A. (1996). On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 1036-1048. · Zbl 0871.60089
[5] Benjamini, I., Kalai, G. and Schramm, O. (2003). First passage percolation has sublinear distance variance. Ann. Probab. 31 1970-1978. · Zbl 1087.60070
[6] Chayes, J. T. and Chayes, L. (1986). Percolation and random media. In Phénomènes Critiques , Systèmes Aléatoires , Théories de Jauge , Part I , II ( Les Houches , 1984) 1001-1142. North-Holland, Amsterdam. · Zbl 0661.60120
[7] Chow, Y. and Zhang, Y. (2003). Large deviations in first-passage percolation. Ann. Appl. Probab. 13 1601-1614. · Zbl 1038.60093
[8] Cox, J. T. and Durrett, R. (1981). Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9 583-603. · Zbl 0462.60012
[9] Cranston, M., Gauthier, D. and Mountford, T. S. (2009). On large deviation regimes for random media models. Ann. Appl. Probab. 19 826-862. · Zbl 1171.60023
[10] Erdös, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Stat. 20 286-291. · Zbl 0033.29001
[11] Erdös, P. (1950). Remark on my paper “On a theorem of Hsu and Robbins.” Ann. Math. Stat. 21 138. · Zbl 0035.21403
[12] Garet, O. and Marchand, R. (2007). Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35 833-866. · Zbl 1117.60090
[13] Grimmett, G. and Kesten, H. (1984). First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 335-366. · Zbl 0525.60098
[14] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin. , Statist. Lab. , Univ. California , Berkeley , Calif. 61-110. Springer, New York. · Zbl 0143.40402
[15] Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33 25-31. · Zbl 0030.20101
[16] Kesten, H. (1986). Aspects of first passage percolation. In École d’Été de Probabilités de Saint-Flour , XIV- 1984. Lecture Notes in Math. 1180 125-264. Springer, Berlin. · Zbl 0602.60098
[17] Kesten, H. (1993). On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 296-338. · Zbl 0783.60103
[18] Kingman, J. F. C. (1968). The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30 499-510. · Zbl 0182.22802
[19] Richardson, D. (1973). Random growth in a tessellation. Proc. Cambridge Philos. Soc. 74 515-528. · Zbl 0295.62094
[20] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 73-205. · Zbl 0864.60013
[21] Zhang, Y. (2010). On the concentration and the convergence rate with a moment condition in first passage percolation. Stochastic Process. Appl. 120 1317-1341. · Zbl 1195.60128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.