Second-order asymptotics for quantum hypothesis testing. (English) Zbl 1321.62155

Summary: In the asymptotic theory of quantum hypothesis testing, the minimal error probability of the first kind jumps sharply from zero to one when the error exponent of the second kind passes by the point of the relative entropy of the two states in an increasing way. This is well known as the direct part and strong converse of quantum Stein’s lemma. {
} Here we look into the behavior of this sudden change and have make it clear how the error of first kind grows smoothly according to a lower order of the error exponent of the second kind, and hence we obtain the second-order asymptotics for quantum hypothesis testing. This actually implies quantum Stein’s lemma as a special case. Meanwhile, our analysis also yields tight bounds for the case of finite sample size. These results have potential applications in quantum information theory. {
} Our method is elementary, based on basic linear algebra and probability theory. It deals with the achievability part and the optimality part in a unified fashion.


62P35 Applications of statistics to physics
62G10 Nonparametric hypothesis testing
Full Text: DOI arXiv Euclid


[1] Audenaert, K. M. R., Casamiglia, J., Munoz-Tapia, R., Bagan, E., Masanes, L., Acin, A. and Verstraete, F. (2007). Discriminating states: The quantum Chernoff bound. Phys. Rev. Lett. 98 160501.
[2] Audenaert, K. M. R., Mosonyi, M. and Verstraete, F. (2012). Quantum state discrimination bounds for finite sample size. J. Math. Phys. 53 122205. · Zbl 1278.81049
[3] Audenaert, K. M. R., Nussbaum, M., Szkoła, A. and Verstraete, F. (2008). Asymptotic error rates in quantum hypothesis testing. Comm. Math. Phys. 279 251-283. · Zbl 1175.81036
[4] Bjelaković, I., Deuschel, J.-D., Krüger, T., Seiler, R., Siegmund-Schultze, R. and Szkoła, A. (2005). A quantum version of Sanov’s theorem. Comm. Math. Phys. 260 659-671. · Zbl 1092.94013
[5] Bjelaković, I., Deuschel, J.-D., Krüger, T., Seiler, R., Siegmund-Schultze, R. and Szkoła, A. (2008). Typical support and Sanov large deviations of correlated states. Comm. Math. Phys. 279 559-584. · Zbl 1163.46041
[6] Bjelaković, I. and Siegmund-Schultze, R. (2004). An ergodic theorem for the quantum relative entropy. Comm. Math. Phys. 247 697-712. · Zbl 1169.94328
[7] Blahut, R. E. (1974). Hypothesis testing and information theory. IEEE Trans. Inform. Theory 20 405-417. · Zbl 0305.62017
[8] Brandão, F. G. S. L. and Plenio, M. B. (2010). A generalization of quantum Stein’s lemma. Comm. Math. Phys. 295 791-828. · Zbl 1190.81015
[9] Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493-507. · Zbl 0048.11804
[10] Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory . Wiley, New York. · Zbl 0762.94001
[11] Csiszár, I. and Longo, G. (1971). On the error exponent for source coding and for testing simple statistical hypotheses. Studia Sci. Math. Hungar. 6 181-191. · Zbl 0232.94008
[12] Han, T. S. (2003). Information-Spectrum Methods in Information Theory . Springer, Berlin. · Zbl 1010.94001
[13] Han, T. S. and Kobayashi, K. (1989). The strong converse theorem for hypothesis testing. IEEE Trans. Inform. Theory 35 178-180. · Zbl 0678.62011
[14] Hayashi, M. (2006). Quantum Information : An Introduction . Springer, Berlin. · Zbl 1195.81031
[15] Hayashi, M. (2007). Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Phys. Rev. A (3) 76 062301.
[16] Hayashi, M. (2009). Information spectrum approach to second-order coding rate in channel coding. IEEE Trans. Inform. Theory 55 4947-4966. · Zbl 1367.94159
[17] Hayashi, M. and Nagaoka, H. (2003). General formulas for capacity of classical-quantum channels. IEEE Trans. Inform. Theory 49 1753-1768. · Zbl 1301.94053
[18] Helstrom, C. W. (1976). Quantum Detection and Estimation Theory . Academic Press, New York. · Zbl 1332.81011
[19] Hiai, F. and Petz, D. (1991). The proper formula for relative entropy and its asymptotics in quantum probability. Comm. Math. Phys. 143 99-114. · Zbl 0756.46043
[20] Hoeffding, W. (1965). Asymptotically optimal tests for multinomial distributions. Ann. Math. Statist. 36 369-408. · Zbl 0135.19706
[21] Holevo, A. S. (1978). On asymptotically optimal hypothesis testing in quantum statistics. Theory Probab. Appl. 23 411-415. · Zbl 0426.62085
[22] Korolev, V. and Shevtsova, I. (2012). An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums. Scand. Actuar. J. 2 81-105. · Zbl 1277.60042
[23] Mosonyi, M. and Datta, N. (2009). Generalized relative entropies and the capacity of classical-quantum channels. J. Math. Phys. 50 072104. · Zbl 1284.94037
[24] Nagaoka, H. (2006). The converse part of the theorem for quantum Hoeffding bound. Preprint. Available at .
[25] Nagaoka, H. and Hayashi, M. (2007). An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses. IEEE Trans. Inform. Theory 53 534-549. · Zbl 1310.94048
[26] Nussbaum, M. and Szkoła, A. (2009). The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Statist. 37 1040-1057. · Zbl 1162.62100
[27] Nussbaum, M. and Szkoła, A. (2011). An asymptotic error bound for testing multiple quantum hypotheses. Ann. Statist. 39 3211-3233. · Zbl 1246.62226
[28] Ogawa, T. and Nagaoka, H. (2000). Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inform. Theory 46 2428-2433. · Zbl 1003.94011
[29] Polyanskiy, Y., Poor, H. V. and Verdú, S. (2010). Channel coding rate in the finite blocklength regime. IEEE Trans. Inform. Theory 56 2307-2359. · Zbl 1366.94312
[30] Tomamichel, M. and Hayashi, M. (2012). A hierarchy of information quantities for finite block length analysis of quantum tasks. Preprint. Available at [quant-ph]. · Zbl 1364.94217
[31] Verdú, S. and Han, T. S. (1994). A general formula for channel capacity. IEEE Trans. Inform. Theory 40 1147-1157. · Zbl 0819.94016
[32] Wang, L. and Renner, R. (2012). One-shot classical-quantum capacity and hypothesis testing. Phys. Rev. Lett. 108 200501.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.