×

On the completeness of hierarchical tensor-product image-splines. (English) Zbl 1321.65020

Summary: Given a grid in \(\mathbb R^{d}\), consisting of dd bi-infinite sequences of hyperplanes (possibly with multiplicities) orthogonal to the dd axes of the coordinate system, we consider the spaces of tensor-product spline functions of a given degree on a multi-cell domain. Such a domain consists of finite set of cells which are defined by the grid. A piecewise polynomial function belongs to the spline space if its polynomial pieces on adjacent cells have a contact according to the multiplicity of the hyperplanes in the grid. We prove that the connected components of the associated set of tensor-product BB-splines, whose support intersects the multi-cell domain, form a basis of this spline space. More precisely, if the intersection of the support of a tensor-product BB-spline with the multi-cell domain consists of several connected components, then each of these components contributes one basis function. In order to establish the connection to earlier results, we also present further details relating to the three-dimensional case with single knots only.{ }A hierarchical BB-spline basis is defined by specifying nested hierarchies of spline spaces and multi-cell domains. We adapt the techniques from [C. Giannelli and B. Jüttler, ibid. 239, 162–178 (2013; Zbl 1259.41014)] to the more general setting and prove the completeness of this basis (in the sense that its span contains all piecewise polynomial functions on the hierarchical grid with the smoothness specified by the grid and the degrees) under certain assumptions on the domain hierarchy.{ }Finally, we introduce a decoupled version of the hierarchical spline basis that allows to relax the assumptions on the domain hierarchy. In certain situations, such as quadratic tensor-product splines, the decoupled basis provides the completeness property for any choice of the domain hierarchy.

MSC:

65D07 Numerical computation using splines

Citations:

Zbl 1259.41014

Software:

ISOGAT
Full Text: DOI

References:

[1] Forsey, D. R.; Bartels, R. H., Hierarchical \(B\)-spline refinement, Comput. Graph., 22, 205-212 (1988)
[2] Kraft, R., Adaptive and linearly independent multilevel \(B\)-splines, (Le Méhauté, A.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods (1997), Vanderbilt University Press: Vanderbilt University Press Nashville), 209-218 · Zbl 0937.65014
[3] Greiner, G.; Hormann, K., Interpolating and approximating scattered 3D-data with hierarchical tensor product \(B\)-splines, (Le Méhauté, A.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods. Surface Fitting and Multiresolution Methods, Innovations in Applied Mathematics (1997), Vanderbilt University Press: Vanderbilt University Press Nashville, TN), 163-172 · Zbl 0937.65019
[4] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[5] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using \(T\)-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263 (2010) · Zbl 1227.74123
[6] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local \(h\)-refinement with \(T\)-splines, Comput. Methods Appl. Mech. Engrg., 199, 264-275 (2010) · Zbl 1227.74125
[7] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., \(T\)-splines and \(T\)-NURCCS, ACM Trans. Graph., 22, 477-484 (2003)
[8] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554-3567 (2011) · Zbl 1239.65013
[9] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 485-498 (2012) · Zbl 1252.65030
[10] Giannelli, C.; Jüttler, B.; Speleers, H., Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math. (2014), in press · Zbl 1298.41010
[11] Kiss, G.; Giannelli, C.; Jüttler, B., Algorithms and data structures for truncated hierarchical \(B\)-splines, (Floater, M.; etal., Mathematical Methods for Curves and Surfaces. Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science, vol. 8177 (2014), Springer), 304-323 · Zbl 1356.65050
[12] Bornemann, P. B.; Cirak, F., A subdivision-based implementation of the hierarchical \(B\)-spline finite element method, Comput. Methods Appl. Mech. Engrg., 253, 584-598 (2013) · Zbl 1297.65147
[13] Kuru, G.; Verhoosel, C. V.; van der Zeeb, K. G.; van Brummelen, E. H., Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. Engrg., 270, 270-292 (2014) · Zbl 1296.65162
[14] Schillinger, D.; Dedé, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and \(T\)-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116-150 (2012) · Zbl 1348.65055
[15] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 331-356 (2013) · Zbl 1264.41011
[16] Deng, J.; Chen, F.; Feng, Y., Dimensions of spline spaces over \(T\)-meshes, J. Comput. Appl. Math., 194, 267-283 (2006) · Zbl 1093.41006
[17] Deng, J.; Chen, F.; Li, X.; Hu, Ch.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical \(T\)-meshes, Graph. Models, 70, 76-86 (2008)
[18] Li, X.; Deng, J.; Chen, F., Dimensions of spline spaces over 3D hierarchical \(T\)-meshes, J. Inf. Comput. Sci., 3, 487-501 (2006)
[19] Li, X.; Deng, J.; Chen, F., Surface modeling with polynomial splines over hierarchical \(T\)-meshes, Vis. Comput., 23, 1027-1033 (2007)
[20] Li, X.; Deng, J.; Chen, F., Polynomial splines over general \(T\)-meshes, Vis. Comput., 26, 277-286 (2010)
[21] Mourrain, B., On the dimension of spline spaces on planar \(T\)-meshes, Math. Comp., 83, 847-871 (2014) · Zbl 1360.65052
[23] Schumaker, L. L.; Wang, L., Approximation power of polynomial splines on \(T\)-meshes, Comput. Aided Geom. Design, 29, 599-612 (2012) · Zbl 1254.65022
[24] Giannelli, C.; Jüttler, B., Bases and dimensions of bivariate hierarchical tensor-product splines, J. Comput. Appl. Math., 239, 162-178 (2013) · Zbl 1259.41014
[25] Berdinsky, D.; Kim, T.; Bracco, C.; Cho, D.; Mourrain, B.; Oh, M.; Kiatpanichgij, S., Dimensions and bases of hierarchical tensor-product splines, J. Comput. Appl. Math., 257, 86-104 (2014) · Zbl 1292.65009
[26] Berdinsky, D.; Kim, T.; Cho, D.; Bracco, C., Bases of \(T\)-meshes and the refinement of hierarchical \(B\)-splines · Zbl 1425.65023
[27] Berdinsky, D.; Kim, T.; Bracco, C.; Cho, D.; Oh, M.; Seo, Y., Iterative refinement of hierarchical \(T\)-meshes for bases of spline spaces with highest order smoothness, Comput. Aided Des., 47, 96-107 (2014)
[28] Prautzsch, H.; Boehm, W.; Paluszny, M., Bézier and \(B\)-Spline Techniques (2002), Springer · Zbl 1033.65008
[29] Klette, R.; Rosenfeld, A., Digital Geometry: Geometric Methods for Digital Picture Analysis (2004), Morgan Kaufmann · Zbl 1064.68090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.