zbMATH — the first resource for mathematics

Partition calculus and cardinal invariants. (English) Zbl 1322.03033
Recall that \(\binom{\lambda}{\kappa}\rightarrow {\binom{\lambda}{\kappa}}^{1,1}_2\) is an abbreviation of the statement that for every \(c:\lambda\times\kappa\to 2\) there are \(A\subseteq\lambda\), \(B\subseteq\kappa\) such that \(|A|=\lambda\), \(|B|=\kappa\) and \(c\restriction A\times B\) is a constant. In [S. Garti and S. Shelah, Ann. Comb. 16, No. 2, 271–276 (2012; Zbl 1270.03077)], it is shown that if \(\kappa\) is strictly smaller than the splitting number \(\mathfrak{s}\), then \(\binom{\kappa}{\omega}\rightarrow{\binom{\kappa}{\omega}}^{1,1}_2\) holds if and only if \(\text{cf}(\kappa)>\aleph_0\).
In the current paper, the authors show that if \(\kappa\) is a cardinal strictly greater than the reaping number \(\mathfrak{r}\) and \(\kappa\) is of sufficiently large cofinality, then \(\binom{\kappa}{\omega}\rightarrow{\binom{\kappa}{\omega}}^{1,1}_2\) holds. Thus, in the model of A. Blass and S. Shelah [Ann. Pure Appl. Logic 33, 213–243 (1987; Zbl 0634.03047)], where \(\mathfrak{r}=\aleph_1<\mathfrak{s}=\mathfrak{c}=\aleph_2\), the partition relation \(\binom{\Theta}{\omega}\rightarrow{\binom{\Theta}{\omega}}^{1,1}_2\) holds for every \(\Theta\in [\aleph_1, 2^{\aleph_0}]\). The authors also give certain generalizations of the above results to higher cardinals. For example, it is shown that if \(\lambda\) is regular, \(\lambda<\mu<\mathfrak{s}_\lambda\), where \(\mathfrak{s}_\lambda\) denotes the generalized splitting number at \(\lambda\), then \(\binom{\mu}{\lambda}\rightarrow{\binom{\mu}{\lambda}}^{1,1}_2\) if and only if \(\text{cf}(\mu)\neq\lambda\). Also, if \(\lambda\) is regular and \(\mu\) satisfies \(\mathfrak{r}_\lambda<\text{cf}(\mu)\leq\mu\leq 2^\lambda\), where \(\mathfrak{r}_\lambda\) denotes the generalized reaping number at \(\lambda\), then \(\binom{\mu}{\lambda}\rightarrow{\binom{\mu}{\lambda}}^{1,1}_2\).
In addition, for certain singular cardinals \(\mu\) and under certain pcf assumptions, the authors obtain the consistency of a positive polarized relation for many cardinals in the interval \((\mu,2^\mu]\).

03E02 Partition relations
03E04 Ordered sets and their cofinalities; pcf theory
03E05 Other combinatorial set theory
03E17 Cardinal characteristics of the continuum
03E35 Consistency and independence results
Full Text: DOI arXiv Euclid
[1] A. Blass, Combinatorial cardinal characteristics of the continuum, In: Handbook of Set Theory. Vols.,1, 2, 3, Springer, Dordrecht, 2010, pp.,395-489. · Zbl 1198.03058
[2] A. Blass and S. Shelah, There may be simple \(P_{\aleph_1}\)- and \(P_{\aleph_2}\)-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic, 33 (1987), 213-243. · Zbl 0634.03047
[3] A. Blass and S. Shelah, Ultrafilters with small generating sets, Israel J. Math., 65 (1989), 259-271. · Zbl 0681.03033
[4] J. Brendle and D. Raghavan, Bounding, Splitting, and almost disjointness, Ann. Pure Appl. Logic, 165 (2014), 631-651. · Zbl 1405.03081
[5] A. D. Brooke-Taylor, Small \(\mathfrak{u}_\kappa\) and large \(2^\kappa\) for supercompact \(\kappa\), arXiv: arXiv: 1206.4161
[6] M. Džamonja and S. Shelah, Universal graphs at the successor of a singular cardinal, J. Symbolic Logic, 68 (2003), 366-388. · Zbl 1055.03030
[7] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar., 16 (1965), 93-196. · Zbl 0158.26603
[8] P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc., 62 (1956), 427-489. · Zbl 0071.05105
[9] S. Garti, Infinite combinatorics, Doctoral thesis (in Hebrew), The Hebrew University, Jerusalem, Israel, 2011.
[10] S. Garti, M. Magidor and S. Shelah, On the spectrum of characters of ultrafilters,
[11] S. Garti and S. Shelah, Combinatorial aspects of the splitting number, Ann. Comb., 16 (2012), 709-717. · Zbl 1284.03222
[12] S. Garti and S. Shelah, A strong polarized relation, J. Symbolic Logic, 77 (2012), 766-776. · Zbl 1270.03076
[13] S. Garti and S. Shelah, Strong polarized relations for the continuum, Ann. Comb., 16 (2012), 271-276. · Zbl 1270.03077
[14] S. Garti and S. Shelah, The ultrafilter number for singular cardinals, Acta Math. Hungar., 137 (2012), 296-301. · Zbl 1289.03030
[15] M. Gitik, Blowing up power of a singular cardinal–wider gaps, Ann. Pure Appl. Logic, 116 (2002), 1-38. · Zbl 0997.03042
[16] A. Hajnal and J. L. Larson, Partition Relations, In: Handbook of Set Theory. Vols.,1, 2, 3, Springer, Dordrecht, 2010, pp.,129-213. · Zbl 1198.03048
[17] S. Shelah, Proper and Improper Forcing. second ed., Perspect. Math. Logic, Springer-Verlag, Berlin, 1998. · Zbl 0889.03041
[18] E. K. van Douwen, The integers and topology, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp.,111-167.
[19] N. H. Williams, Combinatorial Set Theory, studies in logic and the foundations of mathematics, vol.,91, North-Holland publishing company, Amsterdam, New York, Oxford, 1977.
[20] J. Zapletal, Splitting number at uncountable cardinals, J. Symbolic Logic, 62 (1997), 35-42. · Zbl 0874.03058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.