×

Feynman approximation to integrals with respect to Brownian sheet on Lie groups. (English) Zbl 1322.60080

Summary: We consider the Feynman-type approximations to functional integrals over the distribution of the Brownian sheet on a compact connected Lie group \(M\), which give a representation of the integrals over the functional space \(C([0, 1] \times [0, 1]\), \(M\)) as the limit of integrals over the finite-dimensional manifolds \(M \times \cdots \times M\). The known approximation formulas for the one-parameter Brownian motion are generalized to the case of the Brownian sheet.

MSC:

60H05 Stochastic integrals
60G60 Random fields
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9780511566158 · doi:10.1017/CBO9780511566158
[2] DOI: 10.2140/pjm.1993.161.233 · Zbl 0788.60017 · doi:10.2140/pjm.1993.161.233
[3] DOI: 10.1002/9780470316658 · doi:10.1002/9780470316658
[4] Kelley J. L., General Topology (1991) · Zbl 1358.54001
[5] Salamon D. A., Notes on Compact Lie Groups (2013)
[6] DOI: 10.1007/s11118-006-9019-z · Zbl 1107.58014 · doi:10.1007/s11118-006-9019-z
[7] Smolyanov O. G., Can. Math. Soc. Conf. Proc. 29 pp 589– (2000)
[8] Smolyanov O. G., Dokl. Akad. Nauk. 345 pp 455– (1995)
[9] Smolyanov O. G., Dokl. Akad. Nauk. 383 pp 458– (2002)
[10] DOI: 10.1142/S0219025708002951 · Zbl 1151.58020 · doi:10.1142/S0219025708002951
[11] DOI: 10.1007/BFb0075875 · doi:10.1007/BFb0075875
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.