Jacobian-predictor-corrector approach for fractional differential equations. (English) Zbl 1322.65079

The authors deal with the solution of fractional ordinary differential equations. The presented solution approach is based on the application of Jacobi-Gauss-Lobatto quadrature rules applied to the integral equation formulation of the fractional differential equation. A detailed error analysis of the introduced numerical scheme is included.
The highest attainable order of convergence is the same as the number of backward grid points used in the underlying quadrature rule provided the right-hand side of the fractional equation is smooth enough. Finally, the presented numerical experiments confirm the theoretical results.


65L05 Numerical methods for initial value problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
41A55 Approximate quadratures
65D05 Numerical interpolation
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations


Full Text: DOI arXiv


[1] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer-Verlag, Berlin (2006) · Zbl 1093.76002
[2] Daftardar-Gejji, V., Babakhani, A.: Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 293, 511-522 (2004) · Zbl 1058.34002 · doi:10.1016/j.jmaa.2004.01.013
[3] Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510-1522 (2007) · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[4] Deng, W.H.: Short memory principle and a predictor-corrector aproach for fractional differential equations. J. Comput. Appl. Math. 206, 174-188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[5] Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonl. Anal.: TMA 72, 1768-1777 (2010) · Zbl 1182.26009 · doi:10.1016/j.na.2009.09.018
[6] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[7] Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential eqations. Nonlinear Dynam. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[8] Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Nonlinear Dynam. 36, 31-52 (2004) · Zbl 1055.65098
[9] Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algoritm. 26, 333-346 (2001) · Zbl 0976.65062 · doi:10.1023/A:1016601312158
[10] Guo, B.Y., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305-322 (2006) · Zbl 1102.76047 · doi:10.1007/s10915-005-9055-7
[11] Guo, B.Y., Wang, L.: Jacobi interpolation approximations and their applications to singular diferential equations. Adv. Comput. Math. 14, 227-276 (2001) · Zbl 0984.41004 · doi:10.1023/A:1016681018268
[12] Guo, B.Y., Wang, L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1-41 (2004) · Zbl 1057.41003 · doi:10.1016/j.jat.2004.03.008
[13] Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007) · Zbl 1111.65093 · doi:10.1017/CBO9780511618352
[14] Lubich, C.: Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41, 87-102 (1983) · Zbl 0538.65091 · doi:10.1090/S0025-5718-1983-0701626-6
[15] Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45, 463C469 (1985) · Zbl 0584.65090 · doi:10.1090/S0025-5718-1985-0804935-7
[16] Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[17] Lubich, C.: A Stability of convolution quadratures for Abel-Voterra integral equations. IMA J. Numer. Anal. 6, 87-101 (1986) · Zbl 0587.65090 · doi:10.1093/imanum/6.1.87
[18] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[19] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer-Verlag, New York (2000) · Zbl 0957.65001
[20] Shen, J., Tang, T., Wang, L.L.: Spectral Methods-Algorithms, Analysis and Applications. Springer-Verlag, Berlin (2011) · Zbl 1227.65117
[21] Wan, Z.S., Guo, B.Y., Wang, Z.Q.: Jacobi pseudospectral method for fourth order problems. J. Comput. Math. 24, 481-500 (2006) · Zbl 1103.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.