×

Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART I – discretization, limit analysis. (English) Zbl 1322.74055

Summary: The paper deals with a static case of discretized contact problems for bodies made of materials obeying Hencky’s law of perfect plasticity. The main interest is focused on the analysis of the formulation in terms of displacements. This covers the study of: i) a structure of the solution set in the case when the problem has more than one solution ii) the dependence of the solution set on the loading parameter \(\zeta\). The latter is used to give a rigorous justification of the limit load approach based on work of external forces as a function of \(\zeta\). A model example illustrates the efficiency of the method.

MSC:

74M15 Contact in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

HYPLAS
Full Text: DOI

References:

[1] S.Bartels, A.Mielke, and T.Roubíček, Quasistatic small‐strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM J. Numer. Anal.50(2), 951-976 (2012). · Zbl 1248.35105
[2] R.Blaheta, Numerical Methods in Elasto‐Plasticity, Documenta Geonica 1998 (PERES Publishers, Prague, 1999).
[3] A.Caboussat and R.Glowinski, Numerical solution of a variational problem arising in stress analysis: The vector case, Discrete Contin. Dyn. Syst.27, 1447-1472 (2010). · Zbl 1387.74105
[4] M.Cermak, J.Haslinger, T.Kozubek, and S.Sysala, Discretization and numerical realization of contact problems for elastic‐perfectly plastic bodies. PART II ‐ numerical realization, In preparation.
[5] E.Christiansen, Limit Analysis of Collapse States, in: Handbook of Numerical Analysis, Vol. IV, Part 2, edited by P. G.Ciarlet (ed.) and J. L.Lions (ed.) (North‐Holland, Amsterdam, 1996), pp. 195‐312.
[6] H.F.Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983). · Zbl 0582.49001
[7] E.A.de Souza Neto, D.Perić, and D.R.J.Owen, Computational Methods for Plasticity: Theory and Application (Wiley, New York, 2008).
[8] G.Duvaut and J.L.Lions, Inequalities in Mechanics and Physics (Springer‐Verlag, Berlin, 1976). · Zbl 0331.35002
[9] I.Ekeland and R.Temam, Analyse Convexe et Problèmes Variationnels (Dunod, Gauthier Villars, Paris, 1974). · Zbl 0281.49001
[10] M.Fortin and R.Glowinski, Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary Value Problems, Studies in Mathematics and its Applications15 (North‐Holland, Amsterdam, 1983). · Zbl 0525.65045
[11] M.Fuchs and S.Repin, A posteriori error estimates for the approximations of the stress in the Hencky plasticity problem, Numer. Funct. Anal. Optim.32, 610-640 (2011). · Zbl 1419.74076
[12] R.Glowinski, J.L.Lions, and R.Trémolières, Numerical Analysis of Variational Inequalities (North‐Holland, Amsterdam, 1981). · Zbl 0463.65046
[13] W.Han and B.D.Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer‐Verlag, Berlin, Heidelberg, New York, 1999). · Zbl 0926.74001
[14] J.Haslinger and I.Hlaváček, Contact between elastic perfectly plastic bodies, Appl. Math.27(1), 27-45 (1982). · Zbl 0495.73094
[15] J.Haslinger, I.Hlaváček, and J.Nečas, Numerical Methods for Unilateral Problems in Solid Mechanics, in: Handbook of Numerical Analysis, Vol. IV, Part 2, edited by P. G.Ciarlet and J. L.Lions (ed.) (North‐Holland, Amsterdam, 1996), pp. 313‐485. · Zbl 0873.73079
[16] P.G.Hodge, Plastic Analysis of Structures (R. E. Krieger, Malabar, Florida, 1981).
[17] D.Janovská, Numerical Solution of Contact Problems (in Czech), Thésis, Department of Numerical Mathematics, Faculty of Mathematics and Physics (Charles University, Prague, 1980).
[18] C.Johnson, Existence theorem for plasticity problem, J. Math. Pures Appl., IX. Sér.26, 431-444 (1976). · Zbl 0351.73049
[19] C.Johnson and R.Scott, A Finite Element Method for Problems in Perfect Plasticity Using Discontinuous Trial Functions, in: Nonlinear Finite Element Analysis in Structural Mechanics, edited by W.Wunderlich (ed.), E.Stein (ed.), and K.‐J.Bathe (ed.) (Springer‐Verlag, Berlin, 1981), pp. 307‐324. · Zbl 0572.73076
[20] B.Mercier, Sur la Théorie et l’Analyse Numériques de Problèmes de Plasticité, Thésis (Université Paris VI, Paris, 1977).
[21] S.Repin and G.Seregin, Existence of a Weak Solution of the Minimax Problem Arising in Coulomb‐Mohr Plasticity, Nonlinear Evolution Equations, Amer. Math. Soc. Transl. (2), 164 (Amer. Math. Soc., Providence, RI, 1995), pp. 189‐220. · Zbl 0890.73079
[22] R.T.Rockafellar, Convex Analysis (Princeton University Press, Princeton, N.J., 1970). · Zbl 0193.18401
[23] P.Suquet, Existence et Régularité des Solutions des Équations de la Plasticité Parfaite, These de 3e Cycle (Université de Paris VI, Paris, 1978).
[24] P.Suquet, Existence et régularité des solutions des équations de la plasticité, CRAS (Paris), Ser. A286, 1201-1204 (1978). · Zbl 0378.35057
[25] S.Sysala, Application of a modified semismooth Newton method to some elasto‐plastic problems, Math. Comput. Simul.82, 2004-2021 (2012). · Zbl 1252.74059
[26] S.Sysala, Properties and simplifications of constitutive time‐discretized elastoplastic operators, Z. Angew. Math. Mech.1‐23 (2013), DOI: 10.1002/zamm.201200056.
[27] R.Temam, Mathematical Problems in Plasticity (Gauthier‐Villars, Paris, 1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.