×

Measures induced by units. (English) Zbl 1323.03097

Summary: The half-open real unit interval \((0,1]\) is closed under the ordinary multiplication and its residuum. The corresponding infinite-valued propositional logic has as its equivalent algebraic semantics the equational class of cancellative hoops. Fixing a strong unit in a cancellative hoop – equivalently, in the enveloping lattice-ordered abelian group – amounts to fixing a gauge scale for falsity. In this paper we show that any strong unit in a finitely presented cancellative hoop \(H\) induces naturally (i.e., in a representation-independent way) an automorphism-invariant positive normalized linear functional on \(H\). Since \(H\) is representable as a uniformly dense set of continuous functions on its maximal spectrum, such functionals – in this context usually called states – amount to automorphism-invariant finite Borel measures on the spectrum. Different choices for the unit may be algebraically unrelated (e.g., they may lie in different orbits under the automorphism group of \(H\)), but our second main result shows that the corresponding measures are always absolutely continuous w.r.t. each other, and provides an explicit expression for the reciprocal density.

MSC:

03G25 Other algebras related to logic
06D35 MV-algebras
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
11K06 General theory of distribution modulo \(1\)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] DOI: 10.1007/s000120050156 · Zbl 1012.06016 · doi:10.1007/s000120050156
[2] An introduction to the theory of infinite series (1908)
[3] Proceedings of the London Mathematical Society 31 pp 114– (1975)
[4] Lectures on polytopes 152 (1995) · Zbl 0823.52002
[5] DOI: 10.1016/j.jcta.2007.05.009 · Zbl 1152.05006 · doi:10.1016/j.jcta.2007.05.009
[6] DOI: 10.3792/pia/1195573861 · Zbl 0063.09070 · doi:10.3792/pia/1195573861
[7] Computing the continuous discretely (2007)
[8] DOI: 10.2307/2315353 · doi:10.2307/2315353
[9] Fundamenta Informaticae 77 pp 187– (2007)
[10] Enumerative combinatorics. Vol. 1 49 (1997) · Zbl 0889.05001
[11] Real and complex analysis (1987) · Zbl 0925.00005
[12] Uniform distribution of sequences (2006)
[13] DOI: 10.1016/j.fss.2006.06.015 · Zbl 1107.06007 · doi:10.1016/j.fss.2006.06.015
[14] Fully ordered groups (1974)
[15] Dimension Theory (1941)
[16] Metamathematics of fuzzy logic 4 (1998) · Zbl 0937.03030
[17] Partially ordered abelian groups with interpolation (1986) · Zbl 0589.06008
[18] Forum Mathematicum 25 pp 405– (2013)
[19] Combinatorial convexity and algebraic geometry 168 (1996) · Zbl 0869.52001
[20] Journal of Logic and Computation 13 pp 531– (2003)
[21] Dimension theory (1978)
[22] Introduction topiecewise-linear topology (1972)
[23] DOI: 10.1007/s00010-011-0102-1 · Zbl 1329.28029 · doi:10.1007/s00010-011-0102-1
[24] DOI: 10.1080/00927870802104394 · Zbl 1154.06008 · doi:10.1080/00927870802104394
[25] DOI: 10.1007/978-3-540-75939-3_16 · Zbl 1123.03013 · doi:10.1007/978-3-540-75939-3_16
[26] Problems in analytic number theory 206 (2001)
[27] Advanced Łukasiewicz calculus and MV-algebras 35 (2011) · Zbl 1235.03002
[28] DOI: 10.3934/dcds.2008.21.537 · Zbl 1154.28007 · doi:10.3934/dcds.2008.21.537
[29] DOI: 10.1007/BF01053035 · Zbl 0836.03016 · doi:10.1007/BF01053035
[30] Proof theory for fuzzy logics 36 (2009)
[31] Journal of Group Theory 12 pp 911– (2009)
[32] DOI: 10.1007/s00153-010-0206-7 · Zbl 1215.06006 · doi:10.1007/s00153-010-0206-7
[33] Algebraic foundations of many-valued reasoning 7 (2000) · Zbl 0937.06009
[34] Groupes et anneaux réticulés 608 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.