×

On asymptotics of the beta coalescents. (English) Zbl 1323.60021

Summary: We show that the total number of collisions in the exchangeable coalescent process driven by the \(\mathrm{beta}(1, b)\) measure converges in distribution to a 1-stable law, as the initial number of particles goes to \(\infty\). The stable limit law is also shown for the total branch length of the coalescent tree. These results were known previously for the instance \(b = 1\), which corresponds to the Bolthausen-Sznitman coalescent. The approach we take is based on estimating the quality of a renewal approximation to the coalescent in terms of a suitable Wasserstein distance. Application of the method to \(\mathrm{beta}(a, b)\)-coalescents with \(0 < {a} < 1\) leads to a simplified derivation of the known \((2 - a)\)-stable limit. We furthermore derive asymptotic expansions for the moments of the number of collisions and of the total branch length for the \(\mathrm{beta}(1, b)\)-coalescent by exploiting the method of sequential approximations.

MSC:

60C05 Combinatorial probability
60G09 Exchangeability for stochastic processes
60F05 Central limit and other weak theorems
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid Link

References:

[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . U.S. Government Printing Office, Washington, DC. · Zbl 0171.38503
[2] Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Prob. Theory Relat. Fields 117 , 249-266. · Zbl 0963.60086 · doi:10.1007/s004400000053
[3] Bertoin, J. and Pitman, J. (2000). Two coalescents derived from the ranges of stable subordinators. Electron. J. Prob. 5 , 17pp. · Zbl 0949.60034
[4] Berestycki, N. (2009). Recent Progress in Coalescent Theory (Ensaios Mathematicos 16 ), Sociedade Brasileira de Matemática, Rio de Janeiro. · Zbl 1204.60002
[5] Birkner, M. et al. (2005). Alpha-stable branching and beta-coalescents. Electron. J. Prob. 10 , 303-325. · Zbl 1066.60072 · doi:10.1214/EJP.v10-241
[6] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197 , 247-276. · Zbl 0927.60071 · doi:10.1007/s002200050450
[7] Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Prob. 18 , 997-1025. · Zbl 1141.60007 · doi:10.1214/07-AAP476
[8] Drmota, M., Iksanov, A., Moehle, M. and Roesler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent. Stoch. Process. Appl. 117 , 1404-1421. · Zbl 1129.60069 · doi:10.1016/j.spa.2007.01.011
[9] Drmota, M., Iksanov, A., Moehle, M. and Roesler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34 , 319-336. · Zbl 1187.05068 · doi:10.1002/rsa.20233
[10] Feller, W. (1949). Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67 , 98-119. · Zbl 0039.13301 · doi:10.2307/1990420
[11] Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Process. Relat. Fields 15 , 387-416. · Zbl 1203.60110
[12] Givens, C. R. and Shortt, R. M. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31 , 231-240. · Zbl 0582.60002 · doi:10.1307/mmj/1029003026
[13] Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in \(\Lambda\)-coalescents. Electron. J. Prob. 12 , 1547-1567. · Zbl 1190.60061
[14] Gnedin, A., Iksanov, A. and Marynych, A. (2011). On \(\Lambda\)-coalescents with dust component. J. Appl. Prob. 48 , 1133-1151. · Zbl 1242.60077 · doi:10.1239/jap/1324046023
[15] Gnedin, A., Iksanov, A. and Möhle, M. (2008). On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Prob. 45 , 1186-1195. · Zbl 1159.60016 · doi:10.1239/jap/1231340242
[16] Gnedin, A., Iksanov, A., Marynych, A. and Moehle, M. (2012). On asymptotics of the beta-coalescents. Preprint. Available at http://uk.arxiv.org/abs/1203.3110.
[17] Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Prob. 10 , 718-745. · Zbl 1109.60060 · doi:10.1214/EJP.v10-265
[18] Haas, B. and Miermont, G. (2011). Self-similar scaling limits of non-increasing Markov chains. Bernoulli 17 , 1217-1247. · Zbl 1263.92034 · doi:10.3150/10-BEJ312
[19] Huillet, T. and Möhle, M. (2013). On the extended Moran model and its relation to coalescents with multiple collisions. Theoret. Pop. Biol. 87 , 5-14. · Zbl 1296.92207
[20] Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Prob. 12 , 28-35. · Zbl 1133.60012 · doi:10.1214/ECP.v12-1253
[21] Iksanov, A. and Möhle, M. (2008). On the number of jumps of random walks with a barrier. Adv. Appl. Prob. 40 , 206-228. · Zbl 1157.60041 · doi:10.1239/aap/1208358893
[22] Iksanov, A., Marynych, A. and Möhle, M. (2009). On the number of collisions in \(\text{beta}(2,b)\)-coalescents. Bernoulli 15 , 829-845. · Zbl 1208.60081 · doi:10.3150/09-BEJ192
[23] Johnson, O. and Samworth, R. (2005). Central limit theorem and convergence to stable laws in Mallows distance. Bernoulli 11 , 829-845. · Zbl 1094.60014 · doi:10.3150/bj/1130077596
[24] Kersting, G. (2012). The asymptotic distribution of the length of beta-coalescent trees. Ann. Appl. Prob. 22 , 2086-2107. · Zbl 1251.92034 · doi:10.1214/11-AAP827
[25] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13 , 235-248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[26] Möhle, M. (2006). On the number of segregating sites for populations with large family sizes. Adv. Appl. Prob. 38 , 750-767. · Zbl 1112.92046 · doi:10.1239/aap/1158685000
[27] Möhle, M. (2010). Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stoch. Process. Appl. 120 , 2159-2173. · Zbl 1214.60037 · doi:10.1016/j.spa.2010.07.004
[28] Panholzer, A. (2004). Destruction of recursive trees. In Mathematics and Computer Science , Vol. III, Birkhäuser, Basel, pp. 267-280. · Zbl 1060.05022 · doi:10.1007/978-3-0348-7915-6_29
[29] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27 , 1870-1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[30] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 , 1116-1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
[31] Schweinsberg, J. (2000). A necessary and sufficient condition for the \(\Lambda\)-coalescent to come down from infinity. Electron. Commun. Prob. 5 , 1-11. · Zbl 0953.60072
[32] Tavaré, S. (2004). Ancestral inference in population genetics. In Lectures on Probability Theory and Statistics (Lecture Notes Math. 1837 ), Springer, Berlin, pp. 1-188. · Zbl 1062.92046 · doi:10.1007/978-3-540-39874-5_1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.