×

Nonparametric confidence intervals for monotone functions. (English) Zbl 1323.62040

Summary: We study nonparametric isotonic confidence intervals for monotone functions. In [M. Banerjee and J. A. Wellner, Ann. Stat. 29, No. 6, 1699–1731 (2001; Zbl 1043.62037)], pointwise confidence intervals, based on likelihood ratio tests using the restricted and unrestricted MLE in the current status model, are introduced. We extend the method to the treatment of other models with monotone functions, and demonstrate our method with a new proof of the results of Banerjee-Wellner [loc. cit.] and also by constructing confidence intervals for monotone densities, for which a theory remained be developed. For the latter model we prove that the limit distribution of the LR test under the null hypothesis is the same as in the current status model. We compare the confidence intervals, so obtained, with confidence intervals using the smoothed maximum likelihood estimator (SMLE), using bootstrap methods. The “Lagrange-modified” cusum diagrams, developed here, are an essential tool both for the computation of the restricted MLEs and for the development of the theory for the confidence intervals, based on the LR tests.

MSC:

62G15 Nonparametric tolerance and confidence regions
62N01 Censored data models
62G20 Asymptotic properties of nonparametric inference

Citations:

Zbl 1043.62037
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist. 29 1699-1731. · Zbl 1043.62037
[2] Banerjee, M. and Wellner, J. A. (2005). Confidence intervals for current status data. Scand. J. Statist. 32 405-424. · Zbl 1087.62107
[3] Grenander, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39 125-153. · Zbl 0077.33715
[4] Groeneboom, P. and Jongbloed, G. (2013). Smooth and non-smooth estimates of a monotone hazard. In From Probability to Statistics and Back : High-Dimensional Models and Processes. Inst. Math. Stat. ( IMS ) Collect. 9 174-196. IMS, Beachwood, OH. · Zbl 1325.62074
[5] Groeneboom, P. and Jongbloed, G. (2014). Nonparametric Estimation Under Shape Constraints . Cambridge Univ. Press, Cambridge. · Zbl 1338.62008
[6] Groeneboom, P., Jongbloed, G. and Witte, B. I. (2010). Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model. Ann. Statist. 38 352-387. · Zbl 1181.62157
[7] Groeneboom, P., Maathuis, M. H. and Wellner, J. A. (2008). Current status data with competing risks: Consistency and rates of convergence of the MLE. Ann. Statist. 36 1031-1063. · Zbl 1360.62123
[8] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. DMV Seminar 19 . Birkhäuser, Basel. · Zbl 0757.62017
[9] Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist. 20 675-694. · Zbl 0748.62028
[10] Hall, P. and Horowitz, J. (2013). A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Statist. 41 1892-1921. · Zbl 1277.62120
[11] Keiding, N., Hansen, O. K. H., Sørensen, D. N. and Slama, R. (2012). The current duration approach to estimating time to pregnancy. Scand. J. Statist. 39 185-204. · Zbl 1246.62211
[12] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. · Zbl 0703.62063
[13] Kosorok, M. R. (2008). Bootstrapping in Grenander estimator. In Beyond Parametrics in Interdisciplinary Research : Festschrift in Honor of Professor Pranab K. Sen. Inst. Math. Stat. Collect. 1 282-292. IMS, Beachwood, OH.
[14] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference . Wiley, Chichester. · Zbl 0645.62028
[15] Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: The Grenander estimator. Ann. Statist. 38 1953-1977. · Zbl 1202.62057
[16] Slama, R., Højbjerg Hansen, O. K., Ducot, B., Bohet, A., Sorensen, D., Allemand, L., Eijkemans, M. J., Rosetta, L., Thalabard, J. C., Keiding, N. et al. (2012). Estimation of the frequency of involuntary infertility on a nation-wide basis. Hum. Reprod. 27 1489-1498.
[17] Vardi, Y. (1989). Multiplicative censoring, renewal processes, deconvolution and decreasing density: Nonparametric estimation. Biometrika 76 751-761. · Zbl 0678.62051
[18] Watson, G. S. (1971). Estimating functionals of particle size distributions. Biometrika 58 483-490. · Zbl 0228.62026
[19] Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of \(f(0+)\) when \(f\) is nonincreasing. Statist. Sinica 3 501-515. · Zbl 0822.62020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.