×

Finite energy global well-posedness of the Yang-Mills equations on \(\mathbb{R}^{1+3}\): an approach using the Yang-Mills heat flow. (English) Zbl 1325.35180

The purpose of this article is to study the behaviour of the energy for a generalization of Maxwells equation, the Yang-Mills equations. After presenting a system of equations for the Yang-Mills tension field, a gauge is chosen, which does not involve localization in space-time, and which is also suitable for large input values. Then the Yang-Mills heat flow is defined as the solution of a certain tensor PDE. The main result of the paper is to show that the energy controls the growth of a certain norm as \(| t | \to \pm \infty\), which implies that this norm is always finite. The proof consists of several steps and uses Hölders, Sobolev, Gagliardi-Nirenberg, energy integral, Bochner-Weitzenböck-type, Young’s, Minkowski, Gronwall, triangle and Kato’s inequalities, Duhamel’s principle, Bianchis identity, weak maximim principle, Sobolev embedding, and a bootstrap argument. Finally, a list of the dependence to a companion paper, and a list of symbols are given. A monomental paper.

MSC:

35Q40 PDEs in connection with quantum mechanics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81T13 Yang-Mills and other gauge theories in quantum field theory
35Q60 PDEs in connection with optics and electromagnetic theory

References:

[1] I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Global Schrödinger maps in dimensions \(d\geq2\): Small data in the critical Sobolev spaces , Ann. of Math. (2) 173 (2011), 1443-1506. · Zbl 1233.35112 · doi:10.4007/annals.2011.173.3.5
[2] D. Bleeker, Gauge Theory and Variational Principles , Global Anal. Pure Appl. Ser. A 1 , Addison-Wesley, Reading, Mass., 1981.
[3] N. Charalambous and L. Gross, The Yang-Mills heat semigroup on three-manifolds with boundary , Comm. Math. Phys. 317 (2013), 727-785. · Zbl 1279.58005 · doi:10.1007/s00220-012-1558-0
[4] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data , Comm. Pure Appl. Math. 39 (1986), 267-282. · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[5] P. T. Chruściel and J. Shatah, Global existence of solutions of the Yang-Mills equations on globally hyperbolic four-dimensional Lorentzian manifolds , Asian J. Math. 1 (1997), 530-548. · Zbl 0912.58039
[6] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes , Lecture Notes in Math. 242 , Springer, Berlin, 1971.
[7] G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation , Rev. Mat. Iberoamericana 1 (1985), 1-56. · Zbl 0604.42014 · doi:10.4171/RMI/17
[8] G. Dell’Antonio and D. Zwanziger, Every gauge orbit passes inside the Gribov horizon , Comm. Math. Phys. 138 (1991), 291-299. · Zbl 0726.53067 · doi:10.1007/BF02099494
[9] D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), 157-162. · Zbl 0517.53044
[10] B. Dodson, Bilinear Strichartz estimates for the Schrödinger map problem , preprint, [math.AP]. arXiv:1210.5255v2
[11] B. Dodson and P. Smith, A controlling norm for energy-critical Schrödinger maps , preprint, [math.AP]. arXiv:1302.3879v1 · Zbl 1328.35210 · doi:10.1090/S0002-9947-2015-06417-4
[12] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles , Proc. Lond. Math. Soc. (3) 50 (1985), 1-26. · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[13] D. M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, I-II , Comm. Math. Phys. 83 (1982), 171-191 and 193-212. · Zbl 0496.35061 · doi:10.1007/BF01976040
[14] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds , Amer. J. Math. 86 (1964), 109-160. · Zbl 0122.40102 · doi:10.2307/2373037
[15] V. N. Gribov, Quantization of non-Abelian gauge theories , Nuclear Physics B 139 (1978), 1-19. · doi:10.1016/0550-3213(78)90175-X
[16] A. Grünrock, On the wave equation with quadratic nonlinearities in three space dimensions , J. Hyperbolic Differ. Equ. 8 (2011), 1-8. · Zbl 1231.35121 · doi:10.1142/S0219891611002305
[17] S. Klainerman, “The null condition and global existence to nonlinear wave equations” in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984) , Lectures in Appl. Math. 23 , Amer. Math. Soc., Providence, 1986, 293-326.
[18] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem , Comm. Pure Appl. Math. 46 (1993), 1221-1268. · Zbl 0803.35095 · doi:10.1002/cpa.3160460902
[19] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy , Duke Math. J. 74 (1994), 19-44. · Zbl 0818.35123 · doi:10.1215/S0012-7094-94-07402-4
[20] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in \(\mathbb{R}^{3+1}\) , Ann. of Math. (2) 142 (1995), 39-119. · Zbl 0827.53056 · doi:10.2307/2118611
[21] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications , Duke. Math. J. 81 (1995), 99-133. · Zbl 0909.35094 · doi:10.1215/S0012-7094-95-08109-5
[22] S. Klainerman and I. Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux , Invent. Math. 159 (2005), 437-529. · Zbl 1136.58018 · doi:10.1007/s00222-004-0365-4
[23] S. Klainerman and I. Rodnianski, Bilinear estimates on curved space-times , J. Hyperbolic Differ. Equ. 2 (2005), 279-291. · Zbl 1284.58018 · doi:10.1142/S0219891605000440
[24] S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory , Geom. Funct. Anal. 16 (2006), 126-163. · Zbl 1206.35080 · doi:10.1007/s00039-006-0551-1
[25] S. Klainerman and I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux , Geom. Funct. Anal. 16 (2006), 164-229. · Zbl 1206.35081 · doi:10.1007/s00039-006-0557-8
[26] S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in \(\mathbf{R}^{4+1}\) , J. Amer. Math. Soc. 12 (1999), 93-116. · Zbl 0924.58010 · doi:10.1090/S0894-0347-99-00282-9
[27] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1 , Wiley Interscience, New York, 1963. · Zbl 0119.37502
[28] H. Lindblad, Counterexamples to local existence for semi-linear wave equations , Amer. J. Math. 118 (1996), 1-16. · Zbl 0855.35080 · doi:10.1353/ajm.1996.0002
[29] F. Nazarov, S. Treil, and A. Volberg, The \(Tb\)-theorem on non-homogeneous spaces , Acta Math. 190 (2003), 151-239. · Zbl 1065.42014 · doi:10.1007/BF02392690
[30] S.-J. Oh, Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in \(H^{1}\) , J. Hyperbolic Differ. Equ. 11 (2014), 1-108. · Zbl 1295.35328 · doi:10.1142/S0219891614500015
[31] S.-J. Oh, Finite energy global well-posedness of the \((3+1)\)-dimensional Yang-Mills equations using a novel Yang-Mills heat flow gauge , Ph.D. dissertation, Princeton University, Princeton, N.J., 2013.
[32] S.-J. Oh, Almost optimal local well-posedness of the \((1+4)\)-dimensional Yang-Mills equations , in preparation.
[33] J. Råde, On the Yang-Mills heat equation in two and three dimensions , J. Reine Angew. Math. 431 (1992), 123-163. · Zbl 0760.58041 · doi:10.1515/crll.1992.431.123
[34] I. Segal, The Cauchy Problem for the Yang-Mills Equations , J. Funct. Anal. 33 (1979), 175-194. · Zbl 0416.58027 · doi:10.1016/0022-1236(79)90110-1
[35] P. Smith, Conditional global regularity of Schrödinger maps: subthreshold dispersed energy , Anal. PDE 6 (2013), 601-686. · Zbl 1287.35085 · doi:10.2140/apde.2013.6.601
[36] P. Smith, Geometric renormalization below the ground state , Int. Math. Res. Not. IMRN 2012 , no. 16, 3800-3844. · Zbl 1266.58009 · doi:10.1093/imrn/rnr169
[37] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory , Ann. of Math. Stud. 63 , Princeton Univ. Press, Princeton, 1970. · Zbl 0193.10502 · doi:10.1515/9781400881871
[38] M. Struwe, The Yang-Mills flow in four dimensions , Calc. Var. Partial Differential Equations 2 (1994), 123-150. · Zbl 0807.58010 · doi:10.1007/BF01191339
[39] T. Tao, Local well-posedness of the Yang-Mills equation in the Temporal Gauge below the energy norm , J. Differential Equations 189 (2003), 366-382. · Zbl 1017.81037 · doi:10.1016/S0022-0396(02)00177-8
[40] T. Tao, “Geometric renormalization of large energy wave maps” in Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2004) , École Polytechnique, Palaiseau, 2004, Exp. No. XI.
[41] T. Tao, Global regularity of wave maps, III , [math.AP]; IV , arXiv:0806.3592 [math.AP]; V , arXiv:0808.0368 [math.AP]; VI , arXiv:0906.2833 [math.AP]; VII , arXiv:0908.0776 [math.AP]. arXiv: arXiv:0805.4666 · Zbl 1151.42306
[42] X. Tolsa, Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory , Progr. Math. 307 , Birkhäuser, Cham, 2014. · Zbl 1290.42002 · doi:10.1007/978-3-319-00596-6
[43] K. K. Uhlenbeck, Connections with \(L^{p}\) bounds on curvature , Comm. Math. Phys. 83 (1982), 31-42. · Zbl 0499.58019 · doi:10.1007/BF01947069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.