×

Fixed point theorems for various classes of cyclic mappings. (English) Zbl 1325.54021

Summary: We introduce new classes of cyclic mappings and we study the existence and uniqueness of fixed points for such mappings. The presented theorems generalize and improve several existing results in the literature.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
54E50 Complete metric spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Aydi, M. Abbas, and C. Vetro, “Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces,” Topology and its Applications, vol. 159, no. 14, pp. 3234-3242, 2012. · Zbl 1252.54027 · doi:10.1016/j.topol.2012.06.012
[2] V. Berinde and F. Vetro, “Common fixed points of mappings satisfying implicit contractive conditions,” Fixed Point Theory and Applications, vol. 2012, article 105, 2012. · Zbl 1273.54044 · doi:10.1186/1687-1812-2012-105
[3] D. W. Boyd and J. S. W. Wong, “On nonlinear contractions,” Proceedings of the American Mathematical Society, vol. 20, pp. 458-464, 1969. · Zbl 0175.44903 · doi:10.2307/2035677
[4] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de l’Académie Bulgare des Sciences, vol. 25, pp. 727-730, 1972. · Zbl 0274.54033
[5] G. E. Hardy and T. D. Rogers, “A generalization of a fixed point theorem of Reich,” Canadian Mathematical Bulletin, vol. 16, pp. 201-206, 1973. · Zbl 0266.54015 · doi:10.4153/CMB-1973-036-0
[6] R. Kannan, “Some results on fixed points,” Bulletin of the Calcutta Mathematical Society, vol. 60, pp. 71-76, 1968. · Zbl 0209.27104
[7] S. B. Nadler, “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30, pp. 475-488, 1969. · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[8] B. E. Rhoades, “Some theorems on weakly contractive maps,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, pp. 2683-2693, 2001. · Zbl 1042.47521 · doi:10.1016/S0362-546X(01)00388-1
[9] W. Shatanawi, A. Al-Rawashdeh, H. Aydi, and H. K. Nashine, “On a fixed point for generalized contractions in generalized metric spaces,” Abstract and Applied Analysis, vol. 2012, Article ID 246085, 13 pages, 2012. · Zbl 1246.54050 · doi:10.1155/2012/246085
[10] F. Vetro, “On approximating curves associated with nonexpansive mappings,” Carpathian Journal of Mathematics, vol. 27, no. 1, pp. 142-147, 2011. · Zbl 1265.54208
[11] F. Vetro and S. Radenovic, “Nonlinear \psi -quasi-contractions of Ćirić-type in partial metric spaces,” Applied Mathematics and Computation. In press. · Zbl 1291.54073 · doi:10.1016/j.amc.2012.07.061
[12] W. A. Kirk, P. S. Srinivasan, and P. Veeramani, “Fixed points for mappings satisfying cyclical contractive conditions,” Fixed Point Theory, vol. 4, no. 1, pp. 79-89, 2003. · Zbl 1052.54032
[13] H. Aydi, “Generalized cyclic contractions in G-metric spaces,” The Journal of Nonlinear Sciences and Applications. In press.
[14] H. Aydi, C. Vetro, W. Sintunavarat, and P. Kumam, “Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces,” Fixed Point Theory and Applications, vol. 2012, article 124, 2012. · Zbl 1469.54058 · doi:10.1186/1687-1812-2012-124
[15] H. Aydi and E. Karapınar, “A fixed point result for Boyd-Wong cyclic contractions in partial metric spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 2012, Article ID 597074, 11 pages, 2012. · Zbl 1250.54042 · doi:10.1155/2012/597074
[16] A. A. Eldred and P. Veeramani, “Existence and convergence of best proximity points,” Journal of Mathematical Analysis and Applications, vol. 323, no. 2, pp. 1001-1006, 2006. · Zbl 1105.54021 · doi:10.1016/j.jmaa.2005.10.081
[17] J. Anuradha and P. Veeramani, “Proximal pointwise contraction,” Topology and its Applications, vol. 156, no. 18, pp. 2942-2948, 2009. · Zbl 1180.47035 · doi:10.1016/j.topol.2009.01.017
[18] M. Jleli, E. Karapınar, and B. Samet, “Fixed point results for almost generalized cyclic (\psi ,\varphi )-weak contractive type mappings with applications,” Abstract and Applied Analysis, vol. 2012, Article ID 917831, 17 pages, 2012. · Zbl 1246.54041 · doi:10.1155/2012/917831
[19] C.-M. Chen, “Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces,” Fixed Point Theory and Applications, vol. 2012, article 41, 2012. · Zbl 1273.54047 · doi:10.1186/1687-1812-2012-41
[20] E. Karapınar, “Fixed point theory for cyclic weak \varphi -contraction,” Applied Mathematics Letters, vol. 24, no. 6, pp. 822-825, 2011. · Zbl 1256.54073 · doi:10.1016/j.aml.2010.12.016
[21] E. Karapınar, “Best proximity points of Kannan type cylic weak phi-contractions in ordered metricspaces,” Analele Stiintifice ale Universitatii Ovidius Constanta. In press.
[22] E. Karapınar, “Best proximity points of cyclic mappings,” Applied Mathematics Letters, vol. 5, pp. 1761-1766, 2012. · Zbl 1269.47040
[23] E. Karapınar, I. Erhan, and A. Yildiz-Ulus, “Cyclic contractions on G-metric spaces,” Abstract andApplied Analysis. In press. · Zbl 1253.54043 · doi:10.1155/2012/182947
[24] E. Karapınar and I. S. Yuce, “Fixed point theory for cyclic generalized weak \varphi -contraction on partialmetric spaces,” Abstract and Applied Analysis, vol. 2012, Article ID 491542, 12 pages, 2012. · Zbl 1246.54045 · doi:10.1155/2012/491542
[25] E. Karapınar and M. . Erhan, “Cyclic contractions and fixed point theorems,” Filomat, vol. 26, no. 4, pp. 777-782, 2012. · Zbl 1289.47106
[26] M. P\uacurar and I. A. Rus, “Fixed point theory for cyclic \varphi -contractions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1181-1187, 2010. · Zbl 1191.54042 · doi:10.1016/j.na.2009.08.002
[27] G. Petru\csel, “Cyclic representations and periodic points,” Studia Mathematica, vol. 50, no. 3, pp. 107-112, 2005. · Zbl 1117.47046
[28] S. Rezapour, M. Derafshpour, and N. Shahzad, “Best proximity points of cyclic \varphi -contractions in ordered metric spaces,” Topological Methods in Nonlinear Analysis, vol. 37, no. 1, pp. 193-202, 2011. · Zbl 1227.54046
[29] I. A. Rus, “Cyclic representations and fixed points,” Annals of the Tiberiu Popoviciu Seminar, vol. 3, pp. 171-178, 2005.
[30] M. A. Al-Thagafi and N. Shahzad, “Convergence and existence results for best proximity points,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 10, pp. 3665-3671, 2009. · Zbl 1197.47067 · doi:10.1016/j.na.2008.07.022
[31] S. Karpagam and S. Agrawal, “Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 4, pp. 1040-1046, 2011. · Zbl 1206.54047 · doi:10.1016/j.na.2010.07.026
[32] S. Karpagam and S. Agrawal, “Best proximity point theorems for p-cyclic Meir-Keeler contractions,” Fixed Point Theory and Applications, vol. 2009, Article ID 197308, 9 pages, 2009. · Zbl 1172.54028 · doi:10.1155/2009/197308
[33] C. Chen and C. Lin, “Best periodic proximity points for cyclic weaker Meir-Keeler contractions,” Journal of Applied Mathematics, vol. 2012, Article ID 782389, 7 pages, 2012. · Zbl 1245.49007 · doi:10.1155/2012/782389
[34] M. De la Sen, “Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings,” Fixed Point Theory and Applications, vol. 2010, Article ID 572057, 23 pages, 2010. · Zbl 1194.54059 · doi:10.1155/2010/572057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.