zbMATH — the first resource for mathematics

Qualitative properties of certain piecewise deterministic Markov processes. (English. French summary) Zbl 1325.60123
Summary: We study a class of piecewise deterministic Markov processes with state space \(\mathbb{R}^{d}\times E\) where \(E\) is a finite set. The continuous component evolves according to a smooth vector field that is switched at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Working under the general assumption that the process stays in a compact set, we detail a possible construction of the process and characterize its support, in terms of the solution set of a differential inclusion. We establish results on the long time behaviour of the process, in relation to a certain set of accessible points, which is shown to be strongly linked to the support of invariant measures. Under Hörmander-type bracket conditions, we prove that there exists a unique invariant measure and that the processes converge to equilibrium in total variation. Finally, we give examples where the bracket condition does not hold, and where there may be one or many invariant measures, depending on the jump rates between the flows.

60J25 Continuous-time Markov processes on general state spaces
34A60 Ordinary differential inclusions
Full Text: DOI Euclid
[1] J. P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability Theory . Springer, New York, 1984. · Zbl 0538.34007
[2] Y. Bakhtin and T. Hurth. Invariant densities for dynamical systems with random switching. Nonlinearity 25 (10) (2012) 2937-2952. · Zbl 1251.93132
[3] M. Benaïm, J. Hofbauer and S. Sorin. Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44 (2005) 328-348. · Zbl 1087.62091
[4] M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt. Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab. 17 , no. 56, 14 (2012). · Zbl 1347.60118
[5] M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt. On the stability of planar randomly switched systems. Ann. Appl. Probab. 24 (1) (2014) 292-311. · Zbl 1288.93090
[6] O. Boxma, H. Kaspi, O. Kella and D. Perry. On/off storage systems with state-dependent inpout, outpout and swithching rates. Probab. Engrg. Inform. Sci. 19 (2005) 1-14. · Zbl 1063.90001
[7] E. Buckwar and M. G. Riedler. An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63 (6) (2011) 1051-1093. · Zbl 1056.43002
[8] B. Cloez and M. Hairer. Exponential ergodicity for Markov processes with random switching. Bernoulli 21 (2015) 505-536. · Zbl 1330.60094
[9] O. L. V. Costa and F. Dufour. Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optim. 47 (2) (2008) 1053-1077. · Zbl 1159.60339
[10] M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. R. Stat. Soc. Ser. B Stat. Methodol. 46 (3) (1984) 353-388. With discussion. · Zbl 0565.60070
[11] M. H. A. Davis. Markov Models and Optimization. Monographs on Statistics and Applied Probability 49 . Chapman & Hall, London, 1993. · Zbl 0780.60002
[12] P. Diaconis and D. Freedman. Iterated random functions. SIAM Rev. 41 (1) (1999) 45-76. · Zbl 0926.60056
[13] M. Duflo. Random Iterative Models . Springer, Paris, 2000. · Zbl 0868.62069
[14] V. Dumas, F. Guillemin and Ph. Robert. A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. in Appl. Probab. 34 (1) (2002) 85-111. · Zbl 1002.60091
[15] R. Durrett. Stochastic Calculus: A Practical Introduction. Probability and Stochastics Series . CRC Press, Boca Raton, FL, 1996. · Zbl 0856.60002
[16] H. Furstenberg. Strict ergodicity and transformation of the torus. Amer. J. Math. 83 (1961) 573-601. · Zbl 0178.38404
[17] C. Graham and P. Robert. Interacting multi-class transmissions in large stochastic networks. Ann. Appl. Probab. 19 (6) (2009) 2334-2361. · Zbl 1179.60067
[18] C. Graham and P. Robert. Self-adaptive congestion control for multiclass intermittent connections in a communication network. Queueing Syst. 69 (3-4) (2011) 237-257. · Zbl 1236.90022
[19] M. Jacobsen. Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes. Probability and Its Applications . Birkhäuser Boston, Boston, MA, 2006. · Zbl 1093.60002
[20] R. Karmakar and I. Bose. Graded and binary responses in stochastic gene expression. Phys. Biol. 197 (1) (2004) 197-214.
[21] J. M. Lee. Introduction to Smooth Manifolds , 2nd edition. Graduate Texts in Mathematics 218 . Springer, New York, 2013. · Zbl 1258.53002
[22] P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. 26 (3) (1979) 403-413. · Zbl 0497.60003
[23] T. Lindvall. Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics . Wiley, New York, 1992.
[24] R. Mañé. Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 8 . Springer, Berlin, 1987. Translated from the Portuguese by Silvio Levy. · Zbl 0616.28007
[25] K. Pakdaman, M. Thieullen and G. Wainrib. Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. in Appl. Probab. 42 (3) (2010) 761-794. · Zbl 1232.60019
[26] N. S. Papageorgiu. Existence theorems for differential inclusions with nonconvex right-hand side. Int. J. Math. Sci. 9 (3) (1986) 459-469. · Zbl 0611.34053
[27] O. Radulescu, A. Muller and A. Crudu. Théorèmes limites pour des processus de Markov à sauts. Synthèse des résultats et applications en biologie moléculaire. Tech. Sci. Inform. 26 (3-4) (2007) 443-469.
[28] S. M. Ross. Simulation , 2nd edition. Statistical Modeling and Decision Science . Academic Press, San Diego, CA, 1997. · Zbl 1284.92038
[29] G. G. Yin and C. Zhu. Hybrid Switching Diffusions: Properties and Applications. Stochastic Modelling and Applied Probability 63 . Springer, New York, 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.