×

A new operational approach for numerical solution of generalized functional integro-differential equations. (English) Zbl 1325.65182

The authors present a computational method based on the operational Jacobi collocation method for solving generalized functional linear and nonlinear integro-differential equations with mixed argument. As examples, they also solve several functional integro-differential equations, using the proposed method.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45A05 Linear integral equations
45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Borhanifar, A.; Kabir, M. M., New periodic and soliton solutions by application of application of exp-function method for nonlinear evolution equation, Comput. Appl. Math., 229, 158-167, (2009) · Zbl 1166.65050
[2] Borhanifar, A.; Kabir, M. M.; Maryam Vahdat, L., New periodic and soliton wave solutions for the generalized Zakharov system and \((2 + 1)\)-dimensional Nizhnik-Novikov-Veselov system, Chaos Solitons Fractals, 42, 1646-1654, (2009) · Zbl 1198.35216
[3] Borhanifar, A.; Zamiri, A., Application of \((\frac{G^\prime}{G})\)-expansion method for the zhiber-Shabat equation and other related equations, Math. Comput. Modelling, 54, 2109-2116, (2011) · Zbl 1235.35236
[4] Borhanifar, A.; Abazari, R., Exact solutions for nonlinear schrodinger equations by differential transformation method, Appl. Math. Comput., 1-15, (2009)
[5] Borhanifar, A.; Jafari, H.; Karimi, S. A., New solitary wave solutions for the bad Boussinesq and good Boussinesq equations, Numer. Methods Partial Differential Equations, 25, 1231-1237, (2009) · Zbl 1172.65380
[6] Yüzbaşı, Ş.; Sezer, M., An improved Bessel collocation method with a residual error function to solve a class of Lane-Emden differential equations, Math. Comput. Modelling, 57, 1298-1311, (2013)
[7] Yüzbaşı, Ş.; Sezer, M., An exponential matrix method for solving systems of linear differential equations, Appl. Math. Comput. Sci., 36, 336-348, (2013) · Zbl 1261.65082
[8] Iserles, A.; Liu, Y. K., On pantograph integro-differential equations, J. Integral Equations Appl., 6, 213-237, (1994) · Zbl 0816.45005
[9] Ali, I., Convergence analysis of spectral methods for integro-differential equations with vanishing proportional delays, J. Comput. Math., 29, 49-60, (2011) · Zbl 1249.65281
[10] Brunner, H.; Hu, Q. Y., Optimal superconvergence results for delay integro-differential equations of pantograph type, SIAM J. Numer. Anal., 45, 986-1004, (2007) · Zbl 1144.65083
[11] Kolmanovskki, V.; Myshkis, A., Optimal superconvergence results for delay integro-differential equations of pantograph type, SIAM J. Numer. Anal., 45, 986-1004, (2007) · Zbl 1144.65083
[12] Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Hafez, R. M., A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations, Appl. Numer. Math., 77, 43-54, (2014) · Zbl 1302.65175
[13] Wang, K.; Wang, Q., Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations, J. Comput. Appl. Math., 260, 294-300, (2014) · Zbl 1293.65174
[14] Wang, K.; Wang, Q., Lagrange collocation method for solving Volterra-Fredholm integral equation, Appl. Math. Comput., 219, 10434-10440, (2013) · Zbl 1304.65280
[15] Bhrawy, A.; Assas, L. M.; Tohidi, E.; Alghamdi, M. A., A Legendre-gauus collocation method for neutral functional-differential equations with proportional delays, Adv. Difference Equ., (2013) · Zbl 1380.65116
[16] Sezer, M.; Akyüz-Daşcloǧlu, A., A Taylor method for numerical solution of generalized pantograph equations with linear functional argument, J. Comput. Appl. Math., 200, 217-225, (2007) · Zbl 1112.34063
[17] Abazari, R.; Kılıcman, A., Application of differential transform method on nonlinear integro-differential equations with proportional delay, Neural Comput. Appl., 24, 391-397, (2014)
[18] Erdem, K.; Yalçinbaş, S.; Sezer, M., A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations, J. Difference Equ. Appl., 19, 10, 1619-1631, (2013) · Zbl 1277.65114
[19] Kreyszig, E., Introduction functional analysis with applications, (1978), John Wiley and Sons, Inc.
[20] Rashed, M. T., Numerical solution of functional differential, integral and integro-differential equations, Appl. Math. Comput., 156, 485-492, (2004) · Zbl 1061.65146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.