Jiang, Ziwen; Xie, Deren The backward Euler fully discrete finite volume method for the problem of purely longitudinal motion of a homogeneous bar. (English) Zbl 1325.74158 Abstr. Appl. Anal. 2012, Article ID 475801, 23 p. (2012). Summary: We present a linear backward Euler fully discrete finite volume method for the initial-boundary-value problem of purely longitudinal motion of a homogeneous bar and give an optimal order error estimates in \(L^2\) and \(H^1\) norms. Furthermore, we obtain the superconvergence error estimate of the generalized projection of the solution \(u\) in \(H^1\) norm. Numerical experiment illustrates the convergence and stability of this scheme. MSC: 74S10 Finite volume methods applied to problems in solid mechanics 74K10 Rods (beams, columns, shafts, arches, rings, etc.) 65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs PDFBibTeX XMLCite \textit{Z. Jiang} and \textit{D. Xie}, Abstr. Appl. Anal. 2012, Article ID 475801, 23 p. (2012; Zbl 1325.74158) Full Text: DOI OA License References: [1] G. Andrews, “On the existence of solutions to the equation utt=uxxt+\sigma (ux)x,” Journal of Differential Equations, vol. 35, no. 2, pp. 200-231, 1980. · Zbl 0415.35018 · doi:10.1016/0022-0396(80)90040-6 [2] J. M. Greenberg, R. C. MacCamy, and V. J. Mizei, “On the existence, uniqueness and stability of solutions of the equation \sigma \(^{\prime}\)(ux)uxx+\lambda uxxt=\rho 0utt,” Journal of Mathematics and Mechanics, vol. 17, pp. 707-728, 1968. · Zbl 0157.41003 [3] J. M. Greenberg, “On the existence, uniqueness, and stability of solutions of the equation \rho 0Xxx=E(Xx)Xxx+\lambda Xxxt,” Journal of Mathematical Analysis and Applications, vol. 25, pp. 575-591, 1969. · Zbl 0192.44803 · doi:10.1016/0022-247X(69)90257-1 [4] J. M. Greenberg and R. C. MacCamy, “On the exponential stability of solutions of E(ux)uxx+\lambda uxtx=\rho utt,” Journal of Mathematical Analysis and Applications, vol. 31, pp. 406-417, 1970. · Zbl 0219.35010 · doi:10.1016/0022-247X(70)90034-X [5] Y. Liu and D. Liu, “Initial-boundary problem, periodic boundary problem and initial value problem of equation utt=uxxt+\sigma (ux)x,” Chinese Annals of Mathematics, vol. 9, no. 4, pp. 459-470, 1988. · Zbl 0703.35118 [6] X. B. Gao, G. H. Wan, and K. Z. Chen, “The finite difference method for the initial-boundary-value problem of the equation utt=uxxt+f(ux)x,” Mathematica Numerica Sinica, vol. 22, no. 2, pp. 167-178, 2000. [7] Z. Jiang, S. Wang, G. Gao, and C. Chen, “Semi-discrete finite element methods for purely longitudinal motion of a homogeneous bar,” SCI-TECH Engineering, vol. 7, pp. 1541-1545, 2007. [8] Z. Jiang, C. Chen, S. Wang, and G. Gao, “Fully discrete scheme and error estimate for the purely longitudinal motion of a homogeneous bar,” SCI-TECH Engineering, vol. 7, pp. 1836-1839, 2007. [9] Z. Jiang and Y. Jiang, “Mixed finite element simulation for the initial value problems of purely longitudinal motion of a homogeneous bar,” Journal of Jishou University, vol. 28, pp. 7-13, 2007. [10] Z. Jiang and A. Li, “Expanded mixed finite element methods for the problem of purely longitudinal motion of a homogeneous bar,” Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2157-2169, 2011. · Zbl 1350.74022 · doi:10.1016/j.cam.2010.10.012 [11] Z. Jiang and A. Zhu, “Finite volume method for an initial-boundary value problem for the purely longitudinal motion equation of a homogeneous bar,” Journal of Systems Science and Mathematical Sciences, vol. 28, no. 7, pp. 867-885, 2008. · Zbl 1195.74095 [12] M. Yang and Y. Yuan, “A multistep finite volume element scheme along characteristics for nonlinear convection diffusion problems,” Mathematica Numerica Sinica, vol. 26, no. 4, pp. 484-496, 2004. [13] M. Yang and Y. Yuan, “A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems,” Journal of Computational and Applied Mathematics, vol. 200, no. 2, pp. 677-700, 2007. · Zbl 1121.65103 · doi:10.1016/j.cam.2006.01.020 [14] C. Bi, “Mortar upwind finite volume element method for convection diffusion problems,” Applied Mathematics and Computation, vol. 183, no. 2, pp. 831-841, 2006. · Zbl 1121.65117 · doi:10.1016/j.amc.2006.06.031 [15] S. Boivin, F. Cayre, and J. M. Herard, “A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes,” International Journal of Thermal Sciences, vol. 39, no. 8, pp. 806-825, 2000. · doi:10.1016/S1290-0729(00)00276-3 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.