Choi, Suyoung; Park, Hanchul A new graph invariant arises in toric topology. (English) Zbl 1326.57044 J. Math. Soc. Japan 67, No. 2, 699-720 (2015). For a finite simple graph \(G\), the graph associahedron \(P_{\mathcal{B}(G)}\) is a Delzant polytope. To this polytope one can associate a real toric variety \(M(G)\). In the paper under review a purely combinatorial formula for the rational Betti numbers of \(M(G)\) is given.The authors define new combinatorial graph invariants which they call \(a\)-numbers and show that the \(i\)-th \(a\)-number of \(G\) is equal to the \(i\)-th Betti number of \(M(G)\). The proof of this result is based on a formula for the rational Betti numbers of a real toric manifold due to A. Suciu and A. Trevisan [“Real toric varieties and abelian covers of generalized Davis–Januszkiewicz spaces”, Preprint, (2012)] and an investigation of the combinatorics of \(P_{\mathcal{B}(G)}\).Moreover, the \(a\)-numbers of graphs \(G\) in special families are computed. For example, it is shown that the \(a\)-numbers of a complete graph or a star graph are related to the Euler zigzag numbers. Furthermore, the \(a\)-numbers of a path graph are related to the Catalan-numbers. Reviewer: Michael Wiemeler (Augsburg) Cited in 3 ReviewsCited in 12 Documents MSC: 57N65 Algebraic topology of manifolds 55U10 Simplicial sets and complexes in algebraic topology 05C30 Enumeration in graph theory Keywords:graph associahedron; real toric variety; graph invariant; poset topology; shellable poset Software:OEIS PDFBibTeX XMLCite \textit{S. Choi} and \textit{H. Park}, J. Math. Soc. Japan 67, No. 2, 699--720 (2015; Zbl 1326.57044) Full Text: DOI arXiv Euclid Online Encyclopedia of Integer Sequences: Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials. Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows). Triangle read by rows: k-th ”a-number” of star graph K_{1,n-1}. References: [1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260 (1980), 159-183. · Zbl 0441.06002 · doi:10.2307/1999881 [2] M. P. Carr and S. L. Devadoss, Coxeter complexes and graph-associahedra, Topology Appl., 153 (2006), 2155-2168. · Zbl 1099.52001 · doi:10.1016/j.topol.2005.08.010 [3] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk, 33 (1978), 85-134, 247. · Zbl 0425.14013 [4] M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 62 (1991), 417-451. · Zbl 0733.52006 · doi:10.1215/S0012-7094-91-06217-4 [5] M. W. Davis, T. Januszkiewicz and R. Scott, Nonpositive curvature of blowups, Selecta Math., 4 (1998), 491-547. · Zbl 0924.53033 · doi:10.1007/s000290050039 [6] F. De Mari, C. Procesi and M. Shayman, Hessenberg varieties, Trans. Amer. Math. Soc., 332 (1992), 529-534. · Zbl 0770.14022 · doi:10.2307/2154181 [7] T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France, 116 (1988), 315-339. · Zbl 0676.58029 · doi:10.24033/bsmf.2100 [8] W. Fulton, An introduction to toric varieties, Ann. of Math. Studies, 113 , Princeton Univ. Press, Princeton, N.J., 1993. · Zbl 0813.14039 [9] A. Hatcher, Algebraic Topology, Cambridge, 2002. · Zbl 1044.55001 [10] A. Henderson, Rational cohomology of the real Coxeter toric variety of type A, In: Configuration Spaces, Geometry, Combinatorics, and Topology, (eds. A. Björner, F. Cohen, C. De Concini, C. Procesi, M. Salvetti), Pisa, 2012, pp.,313-326. · Zbl 1273.14106 · doi:10.1007/978-88-7642-431-1_14 [11] J. Jurkiewics, Chow ring of projective nonsingular torus embedding, Colloq. Math., 43 (1980), 261-270. [12] T. Oda, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15 , Springer-Verlag, Berlin, 1988. · Zbl 0628.52002 [13] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/. · Zbl 1044.11108 [14] A. Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not., IMRN 2009, no.,6, 1026-1106. [15] A. Postnikov, V. Reiner and L. Williams, Faces of generalized permutohedra, Documenta Mathematica, 13 (2008), 207-273. · Zbl 1167.05005 [16] R. Stanley, Combinatorics and commutative algebra, Second edition, Progr. Math., 41 , Birkhaüser Boston, Inc., Boston, MA, 1996. · Zbl 0838.13008 [17] R. Stanley, A survey of alternating permutations, Contemp. Math., 531 (2010), 165-196. · Zbl 1231.05288 · doi:10.1090/conm/531/10466 [18] R. Stanley, Catalan addendum, http://www-math.mit.edu/ rstan/ec/catadd.pdf. · Zbl 0495.28015 [19] A. Suciu and A. Trevisan, Real toric varieties and abelian covers of generalized Davis-Januszkiewicz spaces, preprint, 2012. · Zbl 1349.00136 · doi:10.4171/OWR/2012/49 [20] A. Suciu, Polyhedral products, toric manifolds, and twisted cohomology, talk at the Princeton-Rider workshop on Homotopy Theory and Toric Spaces, February 23, 2012. · Zbl 1262.47048 [21] A. Trevisan, Generalized Davis-Januszkiewicz spaces and their applications in algebra and topology, Ph.D. thesis, Vrije University Amsterdam, 2012; available at http://dspace.ubvu.vu.nl/handle/1871/32835. [22] A. Zelevinsky, Nested complexes and their polyhedral realizations, Pure and Applied Mathematics Quarterly, 2 (2006), 655-671. · Zbl 1109.52010 · doi:10.4310/PAMQ.2006.v2.n3.a3 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.