Di Cecco, Davide A class of models for multiple binary sequences under the hypothesis of Markov exchangeability. (English) Zbl 1326.60041 Electron. J. Stat. 3, 1113-1132 (2009). Summary: We discuss inference for multiple binary sequences under the hypothesis of Markov exchangeability. So far, the only kind of models for this purpose have been the mixtures of Markov chains. We present a new class of hierarchical models parameterized in terms of Bahadur/Lancaster’s interactions, and compare it to the mixtures of Markov chains models. Cited in 1 Document MSC: 60G09 Exchangeability for stochastic processes 62M99 Inference from stochastic processes Keywords:Markov exchangeability; multiple binary sequences; Bahadur/Lancaster’s interaction × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Altham, P. M. E. (1978). Two generalizations of the binomial distribution., Applied Statist. 27 162-167. · Zbl 0438.62008 · doi:10.2307/2346943 [2] Bahadur, R. R. (1961). A representation of the joint distribution of responses to, n dichotomous items. In Studies in item analysis and prediction 158-168. Stanford Univ. Press, Stanford, Calif. · Zbl 0103.36701 [3] Crisma, L. (1982). Quantitative analysis of exchangeability in alternative processes. In, Exchangeability in probability and statistics (Rome, 1981) 207-216. North-Holland, Amsterdam. · Zbl 0493.60044 [4] Darroch, J. N. (1974). Multiplicative and additive interaction in contingency tables., Biometrika 61 207-214. · Zbl 0284.62028 · doi:10.1093/biomet/61.1.207 [5] Darroch, J. N. and Speed, T. P. (1983). Additive and multiplicative models and interactions., Ann. Statist. 11 724-738. · Zbl 0556.62032 · doi:10.1214/aos/1176346240 [6] de Finetti, B. (1959). La probabilità e la statistica nei rapporti con l’induzione, secondo i diversi punti di vista. C.I.M.E., Induzione e Statistica (No.1), 1-115. · Zbl 0124.34801 [7] Di Cecco, D. On the extendibility of Partially and Markov exchangeable binary sequences. arXiv :0908.4158v2, [math.PR] [8] Diaconis, P. and Freedman, D. (1980). de Finetti’s theorem for Markov chains., Ann. Probab. 8 115-130. · Zbl 0426.60064 · doi:10.1214/aop/1176994828 [9] Diaconis, P. and Freedman, D. (1980). Finite exchangeable sequences., Ann. Probab. 8 745-764. · Zbl 0434.60034 · doi:10.1214/aop/1176994663 [10] Diaconis, P. and Rolles, S. W. W. (2006). Bayesian analysis for reversible Markov chains., Ann. Statist. 34 1270-1292. · Zbl 1118.62085 · doi:10.1214/009053606000000290 [11] Fitzmaurice, G. M., Laird, N. M. and Ware, J. H. (2004)., Applied longitudinal analysis . Wiley Series in Probability and Statistics . Wiley-Interscience [John Wiley & Sons], Hoboken, NJ. · Zbl 1057.62052 [12] Fortini, S., Ladelli, L., Petris, G. and Regazzini, E. (2002). On mixtures of distributions of Markov chains., Stochastic Process. Appl. 100 147-165. · Zbl 1060.60071 · doi:10.1016/S0304-4149(02)00093-5 [13] Freedman, D. (1962). Invariants under mixing which generalize de Finetti’s theorem., Ann. Math. Statist 33 916-923. · Zbl 0253.60064 · doi:10.1214/aoms/1177703856 [14] Freedman, D. (1962). Mixtures of Markov processes., Ann. Math. Statist. 33 114-118. · Zbl 0112.09902 · doi:10.1214/aoms/1177704716 [15] Frydman, H. (1984). Maximum likelihood estimation in the mover-stayer model., J. Amer. Statist. Assoc. 79 632-638. · Zbl 0555.62069 · doi:10.2307/2288410 [16] Girolami, M. and Kabán, A. (2005). Sequential activity profiling: latent Dirichlet allocation of Markov chains., Data Min. Knowl. Discov. 10 175-196. · doi:10.1007/s10618-005-0362-2 [17] Heckerman, D., Meek, C., Smyth, P. and White, S. (2003). Model-based clustering and visualization of navigation patterns on a web site., Data Min. Knowl. Discov. 7 399-424. · doi:10.1023/A:1024992613384 [18] Ip, E. H., Wang, Y. J. and Yeh, Y.-n. (2004). Structural decompositions of multivariate distributions with applications in moment and cumulant., J. Multivariate Anal. 89 119-134. · Zbl 1036.62044 · doi:10.1016/j.jmva.2003.09.001 [19] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997)., Discrete multivariate distributions . Wiley Series in Probability and Statistics: Applied Probability and Statistics . John Wiley & Sons Inc., New York. A Wiley-Interscience Publication. · Zbl 0868.62048 [20] Kupper, L. and Haseman, J. (1978). The use of a correlated binomial model for the analysis of certain toxicological experiments., Biometrics 34 69-76. · Zbl 0421.62080 · doi:10.2307/2529589 [21] Lancaster, H. O. (1969)., The chi-squared distribution . John Wiley & Sons Inc., New York. · Zbl 0193.17802 [22] Lindsay, B. G. (1995)., Mixture models: theory, geometry, and applications. NSF-CBMS Regional Conference Series in Probability and Statistics, vol.5 . IMS, Hayard, CA. · Zbl 1163.62326 [23] Lipsitz, S. R., Fitzmaurice, G. M., Sleeper, L. and Zhao, L. (1996). Estimating the joint distribution of repeated binary responses: Some small sample results., Comput. Stat. Data Anal. 23 219-227. · Zbl 0875.62110 · doi:10.1016/S0167-9473(96)00031-X [24] Muliere, P., Secchi, P. and Walker, S. (2000). Urn schemes and reinforced random walk., Stochastic Process. Appl. 88 59-78. · Zbl 1045.62006 · doi:10.1016/S0304-4149(99)00119-2 [25] Pemantle, R. (2007). A survey of random processes with reinforcement., Probab. Surv. 4 1-79 (electronic). · Zbl 1189.60138 · doi:10.1214/07-PS094 [26] Quintana, F. A. and Newton, M. A. (1998). Assessing the order of dependence for partially exchangeable binary data., J. Amer. Statist. Assoc. 93 194-202. · Zbl 0910.62048 · doi:10.2307/2669616 [27] Quintana, F. A. and Newton, M. A. (1999). Parametric partially exchangeable models for multiple binary sequences., Braz. J. Probab. Stat. 13 55-76. · Zbl 0956.62069 [28] Quintana, F. A. and Silva, A. (2006). Testing for differences among discrete distributions: an application of model-based clustering., Braz. J. Probab. Stat. 20 141-152. · Zbl 1272.62045 [29] Stefanescu, C. and Turnbull, B. W. (2003). Likelihood inference for exchangeable binary data with varying cluster sizes., Biometrics 59 18-24. · Zbl 1210.62020 · doi:10.1111/1541-0420.00003 [30] Streitberg, B. (1990). Lancaster interactions revisited., Ann. Statist. 18 1878-1885. · Zbl 0713.62056 · doi:10.1214/aos/1176347885 [31] Töwe, J., Bock, J. and Kundt, G. (1985). Interactions in contingency table analysis., Biometrical J. 27 17-24. · doi:10.1002/bimj.4710270103 [32] Whittle, P. (1955). Some distribution and moment formulae for the Markov chain., J. Roy. Statist. Soc. Ser. B. 17 235-242. · Zbl 0068.13102 [33] Wood, G. R. (1992). Binomial mixtures and finite exchangeability., Ann. Probab. 20 1167-1173. · Zbl 0759.60010 · doi:10.1214/aop/1176989684 [34] Zabell, S. L. (1995). Characterizing Markov exchangeable sequences., J. Theoret. Probab. 8 175-178. · Zbl 0814.60029 · doi:10.1007/BF02213460 [35] Zaman, A. (1984). Urn models for Markov exchangeability., Ann. Probab. 12 223-229. · Zbl 0542.60065 · doi:10.1214/aop/1176993385 [36] Zaman, A. (1986). A finite form of de Finetti’s theorem for stationary Markov exchangeability., Ann. Probab. 14 1418-1427. · Zbl 0608.60032 · doi:10.1214/aop/1176992383 [37] Zentgraf, R. (1975). A note on Lancaster’s definition of higher-order interactions., Biometrika 62 375-378. · Zbl 0309.62041 · doi:10.1093/biomet/62.2.375 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.