Guo, Jingwei Lattice points in large convex planar domains of finite type. (English) Zbl 1327.11065 Ill. J. Math. 56, No. 3, 731-757 (2012). Summary: Let \(\mathcal{B}\) be a compact convex planar domain with smooth boundary of finite type and \(\mathcal{B}_{\theta}\) its rotation by an angle \(\theta\). We prove that for almost every \(\theta\in[0,2\pi]\) the remainder \(P_{\mathcal {B}_{\theta}}(t)\) is of order \(O_{\theta}(t^{2/3-\zeta})\) with a positive number \(\zeta\) independent of the domain. Cited in 4 Documents MSC: 11P21 Lattice points in specified regions 11L07 Estimates on exponential sums 42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type Keywords:lattice point; convex planar domain of finite type; Fourier transform; exponential sum × Cite Format Result Cite Review PDF Full Text: arXiv Euclid References: [1] \beginbarticle \bauthor\binitsL. \bsnmBrandolini, \bauthor\binitsL. \bsnmColzani, \bauthor\binitsA. \bsnmIosevich, \bauthor\binitsA. \bsnmPodkorytov and \bauthor\binitsG. \bsnmTravaglini, \batitleGeometry of the Gauss map and lattice points in convex domains, \bjtitleMathematika \bvolume48 (\byear2001), page 107-\blpage117. \endbarticle \endbibitem · Zbl 1041.52008 · doi:10.1112/S0025579300014376 [2] \beginbarticle \bauthor\binitsY. \bsnmColin de Verdière, \batitleNombre de points entiers dans une famille homothétique de domaines de \(\mathbb{R}\), \bjtitleAnn. Sci. École Norm. Sup. (4) \bvolume10 (\byear1977), page 559-\blpage575. \endbarticle \endbibitem [3] \beginbarticle \bauthor\binitsJ. W. \bsnmGuo, \batitleOn lattice points in large convex bodies, \bjtitleActa Arith. \bvolume151 (\byear2012), page 83-\blpage108. \endbarticle \endbibitem · Zbl 1314.11061 · doi:10.4064/aa151-1-6 [4] \beginbbook \bauthor\binitsL. , \bbtitleThe analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, \bpublisherSpringer-Verlag, \blocationBerlin, \byear1983. \endbbook \endbibitem [5] \beginbbook \bauthor\binitsM. N. \bsnmHuxley, \bbtitleArea, lattice points, and exponential sums, \bpublisherThe Clarendon Press, Oxford Univ. Press, \blocationNew York, \byear1996. \endbbook \endbibitem [6] \beginbarticle \bauthor\binitsM. N. \bsnmHuxley, \batitleExponential sums and lattice points III, \bjtitleProc. London Math. Soc. (3) \bvolume87 (\byear2003), page 591-\blpage609. \endbarticle \endbibitem · Zbl 1065.11079 · doi:10.1112/S0024611503014485 [7] \beginbarticle \bauthor\binitsA. \bsnmIosevich, \batitleLattice points and generalized Diophantine conditions, \bjtitleJ. Number Theory \bvolume90 (\byear2001), page 19-\blpage30. \endbarticle \endbibitem · Zbl 0989.11048 · doi:10.1006/jnth.2001.2655 [8] \beginbarticle \bauthor\binitsA. \bsnmIosevich, \bauthor\binitsE. \bsnmSawyer and \bauthor\binitsA. \bsnmSeeger, \batitleTwo problems associated with convex finite type domains, \bjtitlePubl. Mat. \bvolume46 (\byear2002), page 153-\blpage177. \endbarticle \endbibitem · Zbl 1012.42006 · doi:10.5565/PUBLMAT_46102_09 [9] \beginbarticle \bauthor\binitsA. \bsnmIosevich, \bauthor\binitsE. \bsnmSawyer and \bauthor\binitsA. \bsnmSeeger, \batitleMean square discrepancy bounds for the number of lattice points in large convex bodies, \bjtitleJ. Anal. Math. \bvolume87 (\byear2002), page 209-\blpage230. \endbarticle \endbibitem · Zbl 1027.11074 · doi:10.1007/BF02868475 [10] \beginbarticle \bauthor\binitsA. \bsnmIosevich, \bauthor\binitsE. \bsnmSawyer and \bauthor\binitsA. \bsnmSeeger, \batitleMean lattice point discrepancy bounds, II: Convex domains in the plane, \bjtitleJ. Anal. Math. \bvolume101 (\byear2007), page 25-\blpage63. \endbarticle \endbibitem · Zbl 1171.11052 · doi:10.1007/s11854-007-0002-4 [11] \beginbbook \bauthor\binitsE. , \bbtitleLattice points, \bpublisherKluwer Academic Publishers Group, \blocationDordrecht, \byear1988. \endbbook \endbibitem [12] \beginbarticle \bauthor\binitsE. and \bauthor\binitsW. G. \bsnmNowak, \batitleLattice points in large convex bodies, \bjtitleMonatsh. Math. \bvolume112 (\byear1991), page 61-\blpage72. \endbarticle \endbibitem · Zbl 0754.11027 · doi:10.1007/BF01321717 [13] \beginbarticle \bauthor\binitsE. and \bauthor\binitsW. G. \bsnmNowak, \batitleLattice points in large convex bodies II, \bjtitleActa Arith. \bvolume62 (\byear1992), page 285-\blpage295. \endbarticle \endbibitem [14] \beginbarticle \bauthor\binitsW. , \batitleOn the average order of the lattice rest of a convex body, \bjtitleActa Arith. \bvolume80 (\byear1997), page 89-\blpage100. \endbarticle \endbibitem [15] \beginbarticle \bauthor\binitsW. , \batitleLattice points in large convex bodies, \bjtitleMonatsh. Math. \bvolume128 (\byear1999), page 315-\blpage330. \endbarticle \endbibitem · Zbl 0948.11037 · doi:10.1007/s006050050066 [16] \beginbarticle \bauthor\binitsW. and \bauthor\binitsW. G. \bsnmNowak, \batitleOn lattice points in planar domains, \bjtitleMath. J. Okayama Univ. \bvolume27 (\byear1985), page 173-\blpage184. \endbarticle \endbibitem [17] \beginbchapter \bauthor\binitsW. and \bauthor\binitsW. G. \bsnmNowak, \bctitleLattice points in planar domains: Applications of Huxley’s “discrete Hardy-Littlewood method”, \bbtitleNumber-theoretic analysis (Vienna, 1988-89), \bsertitleLecture Notes in Math., vol. \bseriesno1452, \bpublisherSpringer, \blocationBerlin, \byear1990, pp. page 139-\blpage164. \endbchapter \endbibitem · doi:10.1007/BFb0096987 [18] \beginbarticle \bauthor\binitsW. G. \bsnmNowak, \batitleZur Gitterpunktlehre der euklidischen Ebene, \bjtitleIndag. Math. \bvolume46 (\byear1984), page 209-\blpage223. \endbarticle \endbibitem [19] \beginbarticle \bauthor\binitsW. G. \bsnmNowak, \batitleZur Gitterpunktlehre der euklidischen Ebene. II, . Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II \bvolume194 (\byear1985), page 31-\blpage37. \endbarticle \endbibitem [20] \beginbarticle \bauthor\binitsB. \bsnmRandol, \batitleA lattice point problem, \bjtitleTrans. Amer. Math. Soc. \bvolume121 (\byear1966), page 257-\blpage268. \endbarticle \endbibitem · doi:10.1090/S0002-9947-1966-0201407-2 [21] \beginbarticle \bauthor\binitsB. \bsnmRandol, \batitleOn the Fourier transform of the indicator function of a planar set, \bjtitleTrans. Amer. Math. Soc. \bvolume139 (\byear1969), page 271-\blpage278. \endbarticle \endbibitem [22] \beginbarticle \bauthor\binitsB. \bsnmRandol, \batitleOn the asymptotic behavior of the Fourier transform of the indicator function of a convex set, \bjtitleTrans. Amer. Math. Soc. \bvolume139 (\byear1969), page 279-\blpage285. \endbarticle \endbibitem · doi:10.1090/S0002-9947-1969-0251450-5 [23] \beginbarticle \bauthor\binitsC. D. \bsnmSogge and \bauthor\binitsE. M. \bsnmStein, \batitleAverages of functions over hypersurfaces in \(\mathbb{R}^n\), \bjtitleInvent. Math. \bvolume82 (\byear1985), page 543-\blpage556. \endbarticle \endbibitem · Zbl 0626.42009 · doi:10.1007/BF01388869 [24] \beginbarticle \bauthor\binitsI. \bsnmSvensson, \batitleEstimate for the Fourier transform of the characteristic function of a convex set, \bjtitleArk. Mat. \bvolume9 (\byear1971), page 11-\blpage22. \endbarticle \endbibitem · Zbl 0221.52001 · doi:10.1007/BF02383634 [25] \beginbarticle \bauthor\binitsM. \bsnmTarnopolska-Weiss, \batitleOn the number of lattice points in planar domains, \bjtitleProc. Amer. Math. Soc. \bvolume69 (\byear1978), page 308-\blpage311. \endbarticle \endbibitem · Zbl 0392.52011 · doi:10.2307/2042616 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.