Global integral gradient bounds for quasilinear equations below or near the natural exponent. (English) Zbl 1327.35384

Let \(\Omega\subset\mathbb{R}^n\), \(n\geq 2\), be a bounded domain and let \(\mu\) be a finite measure on \(\Omega\). The author studies the maximal global regularity for gradients of weak solutions to the problem
\[ -\text{div}\mathcal{A}(x,\nabla u)=\mu \text{ in } \Omega, \quad u=0 \text{ on } \partial \Omega,\tag{1} \]
where \(\mathcal{A}:\mathbb{R}^n\times \mathbb{R}^n\rightarrow \mathbb{R}^n\) is a Carathéodory function satisfying the condition that for some \(p\in [2-\frac{1}{n},n]\) and \(\alpha,\beta>0\) there holds
\[ |\mathcal{A}(x,\xi)|\leq \beta |\xi|^{p-1}\text{ and } \langle \mathcal{A}(x,\xi)-\mathcal{A}(x,\eta),\xi-\eta\rangle\geq \alpha (|\xi|^2+|\eta|^2)^{\frac{p}{2}-1}|\xi-\eta|^2\tag{2} \]
for every \((\xi,\eta)\in \mathbb{R}^n\times\mathbb{R}^n\setminus \{(0,0)\}\) and almost every \(x\in \mathbb{R}^n\).
The author assumes the following capacitary density condition on the domain \(\Omega\): There exist \(c_0,r_0\in (0,\infty)\) such that \[ \text{cap}_p(\overline{B_t(x)}\cap (\mathbb{R}^n\setminus \Omega),B_{2t}(x))\geq \text{cap}_p(\overline{B_t(x)},B_{2t}(x)) \]
for all \(t\in (0,r_0]\) and all \(x\in \mathbb{R}^n\setminus \Omega\). Here, the \(p\)-capacity \(\text{cap}_p\) is defined by \[ \text{cap}_p(K,B_{2t}(x))=\inf\left\{\int_{B_{2t}(x)}|\nabla \varphi|^pdx: \varphi\in C_0^\infty(B_{2t}(x)),\quad \varphi\geq \chi_K\right\} \]
for all compact set \(K\subset B_{2t}(x)\), where \(\chi_A\) is the characteristic function of \(A\) for all \(A\subset \mathbb{R}^n\). Under this condition on \(\Omega\), which is satisfied, for instance, when \(\Omega\) has a Lipschitz boundary, and under condition \((2)\) on \(\mathcal{A}\), the author establishes the following result: There exists a positive constant \(\varepsilon>0\) depending only on \(n,p,\alpha,\beta\) and \(c_0\) such that for any \(q\in(0,p+\varepsilon)\), any \(t\in (0,\infty]\), and any solution \(u\) to problem \((1)\), the following gradient estimate holds: \[ \|\nabla u\|_{L^{q,t}(\Omega)}\leq C\|\mathcal{M}_1(\chi_\Omega|\mu|)^{\frac{1}{p-1}}\|_{L^{q,t}(\mathbb{R}^n)}.\tag{3} \]
Here, \(C\) is a positive constant which depends only on \(n,p,q,t,c_0\) and \(\text{diam}(\Omega)/r_0\), and
\[ \mathcal{M}_1(\nu)(x):=\sup_{r>0}\frac{r\nu(B_r(x))}{|B_r(x)|}, \quad x\in \mathbb{R}^n, \]
is the fractional maximal function defined for each nonnegative locally finite measure \(\nu\) in \(\mathbb{R}^n\). This result improves a local version of inequality \((3)\) given in the article [G. Mingione, Math. Ann. 346, No. 3, 571–627 (2010; Zbl 1193.35077)] in the case \(p\in [2,n]\). As a corollary to inequality \((3)\), for \(\mu=f\in L^{\gamma,t}(\Omega)\) with \(\gamma \in (1,n(p+\varepsilon)/n(p-1)+p+\varepsilon)\), using the boundedness property of the fractional maximal function on Lorentz spaces, one obtains the gradient estimate
\[ \||\nabla u|^{p-1}\|_{L^{n\gamma/(n-\gamma),t}(\Omega)}\leq C\|f\|_{L^{\gamma,t}(\Omega)}. \]
A further application of the main result concerns a Calderón-Zygmund type estimate below the natural exponent \(p\) for \(\mathcal{A}\)-superharmonic solutions to the equation
\[ \text{div} \mathcal{A}(x,\nabla u)=\text{div} F, \quad \text{in } \mathcal{D}'(\mathbb{R}^n).\tag{4} \]
More precisely, the author proves that for any \(q\in (\max\{1,p-1\},p)\), any \(t\in (0,\infty]\), and any vector field \(F\in L^{q/(p-1),t/(p-1)}(\mathbb{R}^n,\mathbb{R}^n)\), the gradient estimate
\[ \|\nabla u\|_{L^{q,t}(\mathbb{R}^n)}\leq C\|\nabla u\|_{L^1(\mathbb{R}^n)}+C\|F\|^{1/(p-1)}_{L^{q/(p-1),t/(p-1)}(\mathbb{R}^n)}\tag{5} \]
holds for any entire \(\mathcal{A}\)-superharmonic solution \(u\) of \((4)\) such that \(\nabla u \in L^1(\mathbb{R}^n,\mathbb{R}^n)\). Here, \(C\) is a positive constant depending only on \(n\), \(p\), \(q\), \(t\), \(\alpha\), and \(\beta\). This gives a partial answer to a question proposed in the article [T. Iwaniec, Stud. Math. 75, 293–312 (1983; Zbl 0552.35034)], where inequality (5) was conjectured to hold for all distributional solutions to equation (4).
Finally, the author considers equation (4) without the assumption \(q>1\), i.e., with \(q\in (p-1,p)\). In this case, the author, under the further assumption that \(-\mathrm{div}F\geq 0\) in \(\mathcal{D}'(\mathbb{R}^n)\), proves that there exists an entire nonnegative \(\mathcal{A}\)-superharmonic solution \(u\) of (4) such that
\[ \|u\|_{L^{nq/(n-q),t}(\mathbb{R}^n)}+\|\nabla u\|_{L^{q,t}(\mathbb{R}^n)}\leq C\|F\|^{1/(p-1)}_{L^{q/(p-1),t/(p-1)}(\mathbb{R}^n)}. \]
The preliminary results to the proof of the main result concern certain interior and boundary comparison estimates for solutions to the equation div\((\mathcal{A}(x,\nabla w))=0\) on suitable domains.


35R06 PDEs with measure
35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J62 Quasilinear elliptic equations
Full Text: DOI


[1] Alvino, A., Ferone, V. and Trombetti, G., Estimates for the gradient of solutions of nonlinear elliptic equations with L1-data, Ann. Mat. Pura Appl.178 (2000), 129-142. · Zbl 1220.35079 · doi:10.1007/BF02505892
[2] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J. L., An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci.22 (1995), 241-273. · Zbl 0866.35037
[3] Boccardo, L. and Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal.87 (1989), 149-169. · Zbl 0707.35060 · doi:10.1016/0022-1236(89)90005-0
[4] Boccardo, L. and Gallouët, T., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations17 (1992), 641-655. · Zbl 0812.35043 · doi:10.1080/03605309208820857
[5] Byun, S. and Wang, L., Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math.57 (2004), 1283-1310. · Zbl 1112.35053 · doi:10.1002/cpa.20037
[6] Caffarelli, L. and Peral, I., On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math.51 (1998), 1-21. · Zbl 0906.35030 · doi:10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
[7] Dal Maso, G., Murat, F., Orsina, A. and Prignet, A., Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci.28 (1999), 741-808. · Zbl 0958.35045
[8] Dall’Aglio, A., Approximated solutions of equations with L1 data. Applications to the H-convergence of quasilinear parabolic equations, Ann. Mat. Pura Appl.170 (1996), 207-240. · Zbl 0869.35050 · doi:10.1007/BF01758989
[9] Del Vecchio, T., Nonlinear elliptic equations with measure data, Potential Anal.4 (1995), 185-203. · Zbl 0815.35023 · doi:10.1007/BF01275590
[10] Duzaar, F. and Mingione, G., Gradient estimates via linear nonlinear potentials, J. Funct. Anal.259 (2010), 2961-2998. · Zbl 1200.35313 · doi:10.1016/j.jfa.2010.08.006
[11] Duzaar, F. and Mingione, G., Gradient estimates via non-linear potentials, Amer. J. Math.133 (2011), 1093-1149. · Zbl 1230.35028 · doi:10.1353/ajm.2011.0023
[12] Giusti, E., Direct Methods in the Calculus of Variations, World Scientific, River Edge, NJ, 2003. · Zbl 1028.49001 · doi:10.1142/9789812795557
[13] Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993. · Zbl 0780.31001
[14] Iwaniec, T., Projections onto gradient fields and Lp-estimates for degenerated elliptic operators, Studia Math.75 (1983), 293-312. · Zbl 0552.35034
[15] Jerison, D. and Kenig, C., The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal.130 (1995), 161-219. · Zbl 0832.35034 · doi:10.1006/jfan.1995.1067
[16] Kilpeläinen, T. and Li, G., Estimates for p-Poisson equations, Differential Integral Equations13 (2000), 791-800. · Zbl 0970.35035
[17] Kilpeläinen, T. and Malý, J., Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci.19 (1992), 591-613. · Zbl 0797.35052
[18] Kilpeläinen, T. and Malý, J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math.172 (1994), 137-161. · Zbl 0820.35063 · doi:10.1007/BF02392793
[19] Lewis, J. L., Uniformly fat sets, Trans. Amer. Math. Soc.308 (1988), 177-196. · Zbl 0668.31002 · doi:10.1090/S0002-9947-1988-0946438-4
[20] Mengesha, T. and Phuc, N. C., Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations250 (2011), 2485-2507. · Zbl 1210.35094 · doi:10.1016/j.jde.2010.11.009
[21] Meyers, N. G., An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa Cl. Sci.17 (1963), 189-206. · Zbl 0127.31904
[22] Mikkonen, P., On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss.104 (1996), 71. · Zbl 0860.35041
[23] Mingione, G., The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci.6 (2007), 195-261. · Zbl 1178.35168
[24] Mingione, G., Gradient estimates below the duality exponent, Math. Ann.346 (2010), 571-627. · Zbl 1193.35077 · doi:10.1007/s00208-009-0411-z
[25] Mingione, G., Nonlinear measure data problems, Milan J. Math.79 (2011), 429-496. · Zbl 1236.35068 · doi:10.1007/s00032-011-0168-1
[26] Muckenhoupt, B. and Wheeden, R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc.192 (1974), 261-274. · Zbl 0289.26010 · doi:10.1090/S0002-9947-1974-0340523-6
[27] Phuc, N. C., On Calderón-Zygmund theory for p- and \(\mathcal{A} \)-superharmonic functions, Calc. Var. Partial Differential Equations46 (2013), 165-181. · Zbl 1263.35119 · doi:10.1007/s00526-011-0478-8
[28] Phuc, N. C. and Torres, M., Characterizations of the existence and removable singularities of divergence measure vector fields, Indiana Univ. Math. J.57 (2008), 1573-1597. · Zbl 1169.35009 · doi:10.1512/iumj.2008.57.3312
[29] Phuc, N. C. and Verbitsky, I. E., Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math.168 (2008), 859-914. · Zbl 1175.31010 · doi:10.4007/annals.2008.168.859
[30] Trudinger, N. S. and Wang, X.-J., On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math.124 (2002), 369-410. · Zbl 1067.35023 · doi:10.1353/ajm.2002.0012
[31] Wang, L., A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.)19 (2003), 381-396. · Zbl 1026.31003 · doi:10.1007/s10114-003-0264-4
[32] Ziemer, W. P., Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.